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Motivation
High-resolution point cloud data

Observation:
Many 3D point clouds contain redundant points, especially in regions with low curvature.
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Motivation
Goal of point cloud sparsification

3D point cloud with high resolution (12, 105 points) 3D point cloud with low resolution (498 points)

Problem: Possibly high computational costs in subsequent steps, e.g., data analysis and machine learning

Goal: Capture geometry of 3D surfaces as good as possible, while minimizing the amount of 3D points needed.

Question: How can we model and sparsify 3D surfaces consistently?
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Finite weighted graphs
Graph-based data modeling

Question: How can we use graphs to describe polygon mesh surfaces?

Polygon mesh representation of a 3D surface of a bunny model. Image courtesy: Gabriel Peyré
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Finite weighted graphs
Graph-based data modeling

Question: How can we use graphs to describe 3D point clouds?

Colored 3D point cloud data of a scanned chair.
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Finite weighted graphs
Graph-based data modeling

Question: How can we use graphs to describe 3D point clouds?

k-nearest neighbor graph construction on the colored 3D point cloud.

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 8/28



Finite weighted graphs
Basic notation

A finite weighted graph G = (V, E, w) consists of:

• a finite set of vertices V = (v1, . . . , vn)
• a finite set of edges E ⊂ V × V , (vi, vj) ∈ E → short: vi ∼ vj

• a weight function w : E → [0, 1] with: w(vi, vj) > 0 ⇔ (vi, vj) ∈ E

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 9/28



Finite weighted graphs
Basic notation

A finite weighted graph G = (V, E, w) consists of:
• a finite set of vertices V = (v1, . . . , vn)

• a finite set of edges E ⊂ V × V , (vi, vj) ∈ E → short: vi ∼ vj

• a weight function w : E → [0, 1] with: w(vi, vj) > 0 ⇔ (vi, vj) ∈ E

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 9/28



Finite weighted graphs
Basic notation

A finite weighted graph G = (V, E, w) consists of:
• a finite set of vertices V = (v1, . . . , vn)
• a finite set of edges E ⊂ V × V , (vi, vj) ∈ E → short: vi ∼ vj

• a weight function w : E → [0, 1] with: w(vi, vj) > 0 ⇔ (vi, vj) ∈ E

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 9/28



Finite weighted graphs
Basic notation

A finite weighted graph G = (V, E, w) consists of:
• a finite set of vertices V = (v1, . . . , vn)
• a finite set of edges E ⊂ V × V , (vi, vj) ∈ E → short: vi ∼ vj

• a weight function w : E → [0, 1] with: w(vi, vj) > 0 ⇔ (vi, vj) ∈ E

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 9/28



Graph-based data modeling
Translating mathematical problems to graphs

Let (V, E, w) be a weighted graph and let f ∈ H(V ) with f : V → Rm be a vertex function and G ∈ H(E) an edge
function. Then we can introduce the following first-order graph differential operators:

Weighted finite difference: ∇w : H(V ) → H(E)

∇wf (vi, vj) =
√

w(vi, vj)(f (vj) − f (vi)) (1)

Adjoint operator: ∇∗
w : H(E) → H(V ) of

⟨∇wf, G⟩H(E) = ⟨f, ∇∗
wG⟩H(V ) (2)

Divergence: divw : H(E) → H(V )

divw G(u) = −∇∗
wG(u) =

∑
vj∼vi

√
w(vi, vj)(G(vi, vj) − G(vj, vi)) (3)
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Finite weighted graphs
A variational denoising modelsfor multivariate data

For point cloud sparsification one can try to solve the following optimization problem on graphs:1

argmin
u∈H(V )

{
J(u) = 1

2
∥u − f∥2

2 + α

p
∥∇wu∥p

p;p

}
, α > 0, p ∈ (0, +∞) (4)

Idea:
Solving the above problem one performs geometric denoising:
• Compute a smooth approximation u of f
• Points concentrate around cluster points with high curvature
• Filter out all points in direct vicinity of cluster points

→ corresponds to a fine-to-coarse strategy!

1F. Lozes, A. Elmoataz, O. Lézoray: Partial difference operators on weighted graphs for image processing on surfaces and point clouds.IEEE TIP 23(9), 2014
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Finite weighted graphs
Point cloud sparsication via geometric denoising
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Finite weighted graphs
Model reduction on graphs
Computation of graph gradient and divergence operators is numerically expensive on huge sets of vertices and many
neighbors per vertex.

Observation:
• Homogeneous data subsets don’t yield much information.
• Most information is obtained on subset boundaries.

Idea: Classical approaches use multiscale strategies to model the data from coarse to fine, e.g., Octree data
representation.
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Cut Pursuit in a nutshell
The algorithm

The Cut Pursuit algorithm23:

uΠ = arg min
u∈H(Π)

D(u, fΠ) + αR(u)

min
B⊂V

{J ′(uΠ ; 1B) = ⟨∇D(uΠ , f ), 1B⟩ + α⟨∇RS(uΠ), 1B⟩ + αR′
Sc(uΠ ; 1B)}

(5)

Intuitively:

1. Initialize a partition Π

2. Repeat until convergence:

◦ Compute reduced data fΠ based on Π
◦ Solve energy functional for reduced problem
◦ Expand solution uΠ as piecewise constant function uΠ to V
◦ Compute new partition Π via graph cut based on distance uΠ to original data f

2L. Landrieu, G. Obozinski: Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs. SIAM Journal on Imaging Sciences 10(4), 2017
3H. Raguet, L. Landrieu: Cut-pursuit algorithm for regularizing nonsmooth functionals with graph total variation. International Conference on Machine Learning, 2018
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Cut Pursuit in a nutshell
Illustration on a toy example
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Proposed approach4:

Idea: Cut Pursuit as coarse-to-fine strategy for point cloud sparsification

• Find heuristics to extend graph cuts to regularization terms with coupled dimensions:

argmin
u∈H(V )

{
J(u) = 1

2
∥u − f∥2

2 + α

p
∥∇wu∥p

p;q

}
, α > 0, p ∈ [1, +∞) (7)

• Decouple partition problem and reduced problem:

uΠ = arg min
u∈H(Π)

D(u, fΠ) + βQ(u)

min
B⊂V

{J ′(uΠ ; 1B) = ⟨∇D(uΠ , f ), 1B⟩ + α⟨∇RS(uΠ), 1B⟩ + R′
Sc(uΠ ; 1B)}

(8)

• Parameter α controls level-of-details, parameter β controls shape regularization

4D. Tenbrinck, F. Gaede, M. Burger: Variational Graph Methods for Efficient Point Cloud Sparsification, arXiv preprint (2019)
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Numerical results
Special case: Octree partitioning
Observation: Setting α = β = 0 reduces Cut Pursuit to Octree partitioning, if D(u, fΠ) := 1

2||u − fΠ||2.

uΠ = arg min
u∈H(Π)

D(u, fΠ) + βQ(u)

min
B⊂V

{J ′(uΠ ; 1B) = ⟨∇D(uΠ , f ), 1B⟩ + α⟨∇RS(uΠ), 1B⟩ + R′
Sc(uΠ ; 1B)}

(9)
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Numerical results
Regularization with ℓ2 norm

Sparsified point cloud with medium regularization (β = 10) Triangulated point cloud with medium regularization (β = 10)
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Numerical results
Regularization with ℓ2 norm

Sparsified point cloud with strong regularization (β = 70) Triangulated point cloud with strong regularization (β = 70)
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Numerical results
Regularization with (anisotropic) ℓ1 norm

Sparsified point cloud with medium regularization (β = 10) Triangulated point cloud with medium regularization (β = 10)
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Numerical results
Regularization with (anisotropic) ℓ1 norm

Sparsified point cloud with strong regularization (β = 50) Triangulated point cloud with strong regularization (β = 50)
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Numerical results
Regularization with weighted ℓ0 norm

Original point cloud data (35, 947 points) Triangulation of original point cloud data
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Numerical results
Regularization with weighted ℓ0 norm

Point cloud sparsification for α = 0.3 (12, 105 points) Triangulation of sparsified point cloud data
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Numerical results
Regularization with weighted ℓ0 norm

Point cloud sparsification for α = 1 (1, 912 points) Triangulation of sparsified point cloud data
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Numerical results
Regularization with weighted ℓ0 norm

Point cloud sparsification for α = 3.5 (498 points) Triangulation of sparsified point cloud data
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Numerical results
Regularization with ℓ0 norm

Dragon dataset (435, 545 points). Time needed: 70.6 seconds. Points left: 16, 138 (3.71%)
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Numerical results
Regularization with ℓ0 norm

Buddha dataset (543, 524 points).Time needed: 94 seconds. Points left: 29, 168 (5.37%)
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Numerical results
Regularization with ℓ0 norm

Data set Fine-to-coarse approach Cut Pursuit approach

Bunny: 35, 947 points 126s 3.7s3.7s3.7s
8, 034 points left (22.35%) 7, 794 points left (21.69%)

Dragon: 435, 545 points 8, 239s 70.6s70.6s70.6s
16, 438 points left (3.77%) 16, 138 points left (3.71%)

Buddha: 543, 524 points 3, 305s 94s94s94s
29, 168 points left (5.37%) 26, 247 points left (4.83%)

Table: Comparison of overall runtime in seconds between a direct optimization via preconditioned primal-dual optimization and the weighted ℓ0
Cut Pursuit algorithm for point cloud sparsification tested on three different data sets.

→ Speed up of factor 100 possible!
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Numerical results
Impact of the regularization on noisy data
Noisy 3D point cloud:

Noisy point cloud of Bunny data set (front) Noisy point cloud of Bunny data set (side)
FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 25/28



Numerical results
Impact of the regularization on noisy data
Sparsification without regularization (Octree):

Sparsified point cloud of Bunny data set (front) Sparsified point cloud of Bunny data set (side)
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Numerical results
Impact of the regularization on noisy data

Sparsification using ℓ2 regularization:

Sparsified point cloud of Bunny data set (front) Sparsified point cloud of Bunny data set (side)

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 25/28



1. Motivation

2. Finite weighted graphs

3. Cut Pursuit for efficient point cloud sparsification

4. Numerical Results

5. Conclusion

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 26/28



Conclusion and Outlook

What you should take home:

• If you are interested in coarse (intermediate) solutions use Cut Pursuit
• Decouple partition problem and reduced problem for additional flexibility and to incorporate a-priori knowledge

Future work on Cut Pursuit:

• Cut Pursuit for high-dimensiobak point clouds (features) in machine learning
• Gain additional speed-up by combining Cut Pursuit with random sampling for huge point cloud data
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Cut Pursuit in a nutshell
Efficient total variation denoising for multivariate data

Original RGB image data Iteration 1
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Cut Pursuit in a nutshell
Efficient total variation denoising for multivariate data

Original RGB image data Iteration 2
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Cut Pursuit in a nutshell
Efficient total variation denoising for multivariate data

Original RGB image data Iteration 3

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 3/12



Cut Pursuit in a nutshell
Efficient total variation denoising for multivariate data

Original RGB image data Iteration 4
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Cut Pursuit in a nutshell
Efficient total variation denoising for multivariate data

Original RGB image data Iteration 5
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Cut Pursuit in a nutshell
Efficient total variation denoising for multivariate data

Original RGB image data Iteration 6
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Proposed method
Weighted ℓ0 regularization

argmin
u∈H(V )

{
J(u) = D(u, f ) + α

∑
(vi,vj)∈E

√
w(vi, vj)1Su

}
,

Su := {(vi, vj) ∈ E : u(vi) ̸= u(vj)}.

(10)
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Cut Pursuit in a nutshell
Mathematical prerequisites

Assumptions:
Let u, f : V → R be real vertex functions on a finite weighted graph G.

We are interested in a minimizing a variational model of the form:

J(u) = D(u, f ) + αR(u), α > 0 (11)

with D being a data fidelity term and R a regularization term.

We assume:
1. D is differentiable
2. R is separable and directional derivatives exist, i.e., the term

R′(u; d⃗) = lim
t→0

R(u + td⃗) − R(u)
t

(12)

should be well-defined for every vector u and every direction d⃗.

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 8/12



Cut Pursuit in a nutshell
Mathematical prerequisites

Assumptions:
Let u, f : V → R be real vertex functions on a finite weighted graph G.
We are interested in a minimizing a variational model of the form:

J(u) = D(u, f ) + αR(u), α > 0 (11)

with D being a data fidelity term and R a regularization term.

We assume:
1. D is differentiable
2. R is separable and directional derivatives exist, i.e., the term

R′(u; d⃗) = lim
t→0

R(u + td⃗) − R(u)
t

(12)

should be well-defined for every vector u and every direction d⃗.

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 8/12



Cut Pursuit in a nutshell
Mathematical prerequisites

Assumptions:
Let u, f : V → R be real vertex functions on a finite weighted graph G.
We are interested in a minimizing a variational model of the form:

J(u) = D(u, f ) + αR(u), α > 0 (11)

with D being a data fidelity term and R a regularization term.

We assume:
1. D is differentiable
2. R is separable and directional derivatives exist, i.e., the term

R′(u; d⃗) = lim
t→0

R(u + td⃗) − R(u)
t

(12)

should be well-defined for every vector u and every direction d⃗.

FAU Erlangen Nürnberg Daniel Tenbrinck fau-beamer June 20th, 2022 8/12



Cut Pursuit in a nutshell
Mathematical prerequisites

We decompose R(u) via a set of edges S ⊂ E in a differentiable part and a non-differentiable part:

R(u) = RS(u) + RSc(u)

Let Π be a partition of the vertex set V with

Π :=
{

Ai ⊂ V | i ∈ I = {1, . . . , m}, V = ∪̇m
i=1Ai

}
We (essentially) compute a reduced function fΠ based on the partition Π as:

fΠ(vi) = 1
|Ai|

∑
vj∈Ai

f (vj) =̂ meanAi
(f ).
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Example: Cut Pursuit for TV image denoising

Mean value of image Mean value of image
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Example: Cut Pursuit for TV image denoising

Iteration: 1; Number of sets: 34
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Example: Cut Pursuit for TV image denoising

Iteration: 3; Number of sets: 488
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Example: Cut Pursuit for TV image denoising

Iteration: 5; Number of sets: 1006
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Example: Cut Pursuit for TV image denoising

Iteration: 9; Number of sets: 1256
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Appendix: Steepest binary cut

Aim:
Compute a finer partition Π with largest possible decrease of J . This is a NP hard problem for which a solution can be
computed by a minimum graph cut on a flow graph5

Gflow with Vflow = V ∪ {s, t} with capacities defined
as 

c(u, t) = |∇JS(f )u|, u ∈ ∇−

c(s, u) = ∇JS(f )u, (u) ∈ ∇+

c(u, v) = α
√

w(u, v), f (u) = f (v)

We get the sets disjunct S, T ⊂ V and set B = S and Bc = T .

5L. Landrieu, G. Obozinski: Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs. SIAM Journal on Imaging Sciences 10(4), 2017
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Directional derivative

Let S(f ) = {(u, v) ∈ E|∂vf (u) ̸= 0 ⇔ f (u) ̸= f (v)} differentiable.
Split in differentiable and non-differentiable parts

R′(f ; d⃗) = ⟨∇SR(f ), d⃗⟩ + R′
Sc(f ; d⃗)

with

∇RS(f )(u, v) =

{√
w(u, v) f(u)−f(v)

∥f(u)−f(v)∥1
, (u, v) ∈ S

0, else

and
R′

Sc(f ; d⃗) =
∑

(u,v)∈Sc

√
w(u, v)|d⃗(v) − d⃗(u)|
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