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The word hash is a little bit
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What is a hash? @

The word hash is a little bit

This presentation is about , e.g.,
MD5, SHA256, . ..

Example:

Hash(" Your silly string could be here!”) —  29¢5963522/bf955f9...
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Why do we need cryptographic hash functions? &Q

Hash functions are an for various information
security applications, e.g.,
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— data fingerprinting to check for modifications
— checksum to detect data corruption
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Hash functions are an for various information
security applications, e.g.,

data integrity validation

— data fingerprinting to check for modifications

— checksum to detect data corruption

authenticity

— digital signatures, message authentication codes (MACs)

—r Secure password storage
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Scenario:
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Scenario:
Alice wants to send a plain text message m to Bob:

m := "Your new bridge is beautiful!”
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Scenario:
Alice wants to send a plain text message m to Bob:
m := "Your new bridge is beautiful!”
Hacker performs MITM attack and alters the message to:

m'’ := "Your new bridge is 1"
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Compression and hash functions
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Mathematical setting:
let © be a finite set of characters encoding our messages
— e.g., latin alphabet, hexadecimal encoding

— often we assume a binary encoding, i.e., ¥ = {0,1}
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Mathematical setting:
let © be a finite set of characters encoding our messages
— e.g., latin alphabet, hexadecimal encoding
— often we assume a binary encoding, i.e., ¥ = {0,1}

we define a as a map:
B2 SET T, n> k.

that means we compress the information of a word w € ¥" by
compressing it to a smaller word w’ =: c(w) € £k
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Mathematical setting:
let © be a finite set of characters encoding our messages
— e.g., latin alphabet, hexadecimal encoding
— often we assume a binary encoding, i.e., ¥ = {0,1}

we define a as a map:
B2 SET T, n> k.

that means we compress the information of a word w € ¥" by
compressing it to a smaller word w’ =: c(w) € £k

Example: Binary checksum of words with length 4.

"0101" — "0", "1011" — "1”
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Mathematical setting:

we define a as a map:
h: T — ¥k

that means we map words w € ¥* of variable size to a word
w' =: h(w) € ¥ of fixed length

Example: Last byte of a word with variable length

"110101" — "17, "100" — "0"
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Observation:

It becomes clear that both compression and hash functions are not
injective, because they map a large set to a smaller set.

This inevitably leads to , 1.e., different words being
mapped to the same value.

Example: Binary checksum of words with length 4.

"1101" — "17, "1000" — "1"
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To use compression or hash functions for they have
to fulfill certain criteria:
computing a hash value h(m) from a given message m € X* is
efficient
finding is numerically unfeasible
— computing m,m" € ¥* with h(m) = h(m’) impracticable
generated hash values should be pseudo-random
— small changes should lead to completely different values
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Question: Can we construct a hash function h from a
cryptographic compression function ¢: £" — ¥X n > k?
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Question: Can we construct a hash function h from a
cryptographic compression function ¢: £" — ¥X n > k?

Idea:

partition message m € X" in N € N words, each of size n:

m = my|lmy|...|my
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Question: Can we construct a hash function h from a
cryptographic compression function ¢: £" — ¥X n > k?

Idea:

partition message m € X" in N € N words, each of size n:
m = my|lmy|...|my

add at the end

— e.g., use zeros + binary encoding of message length |m|
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Question: Can we construct a hash function h from a
cryptographic compression function ¢: £" — ¥X n > k?

Idea:

partition message m € X" in N € N words, each of size n:
m = my|lmy|...|my

add at the end

— e.g., use zeros + binary encoding of message length |m|

now compression function ¢ can be applied to every block
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Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?
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Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?

Idea:
choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1
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Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?

Idea:
choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1

m mo
IV — e — —
a @
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Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?

Idea:
choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1

my my mg3
IV — e — R — —
€1 %)
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Question: Can we construct a hash function h from a
cryptographic compression function c: ¥" — Zk, n> k?
Idea:

choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1

result of last block ¢y defines output of hash function for
message m, i.e., h(m) = hy, := ¢y

my my ms3 my + p
\Y, o o N1 m
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Scenario:
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Scenario:

Alice sends a plain text message m together with its hash
value hp, =: h(m) to Bob:
m := "Your new bridge is beautiful!”, h,, = e4689al

m|h,,
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Scenario:
Alice sends a plain text message m together with its hash
value hp, =: h(m) to Bob:
m := "Your new bridge is beautiful!”, h,, = e4689al
Hacker performs MITM attack and alters the message to:

m’ := "Your new bridge is 1"

m|hy,
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Scenario:

Bob receives the message m’ and computes its hash value
hpy =: h(m') as:
m’ := "Your new bridge is ugly!”, h, = 54c8b30
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Scenario:
Bob receives the message m’ and computes its hash value
hpy =: h(m') as:
m’ := "Your new bridge is ugly!”, h, = 54c8b30
Bob realizes the message has been because:
hn = e4689al # 54c8b30 = hyy

m'|h,,
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Question: Are Alice and Bob now safe from the hacker?
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Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.
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Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.
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Message authentication codes (MACs)
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Cryptographic hash functions for authentication @.@

Question:
How can Bob know that the message is really from Alice?
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Question:
How can Bob know that the message is really from Alice?
Idea: We need to to the hash function

that only Alice and Bob know.
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Question:
How can Bob know that the message is really from Alice?

Idea: We need to to the hash function
that only Alice and Bob know.

Secret s
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Mathematical setting:

we define a parametrized hash function h® as a map:
h: S x T* — ¥k

here S is a key space from which we can choose a secret key s
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Mathematical setting:

we define a parametrized hash function h® as a map:
h: S x T* — ¥k

here S is a key space from which we can choose a secret key s

since the key s is unknown to externals h® is called

Example: Secret key s € S is prepended to the message m € ©*
prior to computing a hash value via h, i.e.,

h*(m) := h(s|m) = h;

m
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Scenario:
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Scenario:
Alice sends a plain text message m together with its MAC
using the secret s € S as h;, =: h°(m) to Bob:
m := "Your new bridge is beautiful!”, h;, = fa461b

m|hy,
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Scenario:
Alice sends a plain text message m together with its MAC
using the secret s € S as h;, =: h°(m) to Bob:
m := "Your new bridge is beautiful!”, h;, = fa461b
Hacker performs MITM attack and alters the message to:
m’ := "Your new bridge is ugly!”
Hacker s € S and guesses g € S
generating the MAC h8, = 40afde

m|h,
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Scenario:
Bob receives the message m’ and computes its MAC using
the secret s € S as h°, =: h*(m'):

m' := "Your new bridge is ugly!”, h®, = 34da47
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Scenario:
Bob receives the message m’ and computes its MAC using
the secret s € S as h°, =: h*(m'):
m' := "Your new bridge is ugly!”, h®, = 34da47
Bob realizes the message because:
he, = 34dad7 # 40afde = hE,

m|h,
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Question: Are Alice and Bob now safe from the hacker?
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Question: Are Alice and Bob now safe from the hacker?

Answer: Unfortunately not, if:

the hash function in the used MAC is based on the
Merkle-Damgard construction

the secret is prepended to the message
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Question: Are Alice and Bob now safe from the hacker?

Answer: Unfortunately not, if:

the hash function in the used MAC is based on the
Merkle-Damgard construction

the secret is prepended to the message

Then, the hacker can perform a length extension attack and
forge a message with valid MAC
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Assumptions:

h® is a MAC that prepends the secret s € S and has a known
Merkle-Damgard hash function and padding p

hs, := h(s|m|p) is MAC for original message m
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Assumptions:

h® is a MAC that prepends the secret s € S and has a known
Merkle-Damgard hash function and padding p
hs, := h(s|m|p) is MAC for original message m

Goal: Forge a valid MAC for an m = ml|e
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Assumptions:

h® is a MAC that prepends the secret s € S and has a known
Merkle-Damgard hash function and padding p

hs, := h(s|m|p) is MAC for original message m

Goal: Forge a valid MAC for an m = ml|e
Example:

m: amount=1000&receiver=bob
h:, = h(s|m|p) = 7b2f60

‘m: amount=1000&receiver=bob
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Question: How to forge a valid MAC for the extended message m?
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Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function
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S+ m my + p
h
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Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function

S+m my + p €1
h
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Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function

s+ m my + p €1 e +p
he, "
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Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function

h?, = h(s|m|p), but we don't know length of s and p:

iy = h(s[ma|ma| - |mp|r)
+ m my + €1 ek +p
m
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Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h?, — use h; as
c in Merkle-Damgard hash function

h?, = h(s|m|p), but we don't know length of s and p:

m

hy, = h(s|my|ma]---[mn|p)

use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hz.

+ m my + €1 ek +p
he, "
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Question: How to protect MACs from length extension attacks?
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Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
to compute a hash-based message
authentication code (HMAC).

HMAC(s, m) := /1 s ® opad | h(s @ ipad |m)
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Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
to compute a hash-based message
authentication code (HMAC).

HMAC(s, m) := /1 s ® opad | h(s @ ipad |m)

ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c...0x5¢, opad = 0x36...0x36
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Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
to compute a hash-based message
authentication code (HMAC).

HMAC(s, m) := /1 s ® opad | h(s @ ipad |m)

ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c...0x5¢, opad = 0x36...0x36

works with any cryptographic hash function h
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Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
to compute a hash-based message
authentication code (HMAC).

HMAC(s, m) := /1 s ® opad | h(s @ ipad |m)

ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c...0x5¢, opad = 0x36...0x36

works with any cryptographic hash function h
proposed in RFC2104
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Observations:

hash functions and MACs are the
content of plain text message m a-priori
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different ways to combine MAC h® with encrypted message
€m:

e(m) | h*(m)
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Observations:

hash functions and MACs are the
content of plain text message m a-priori

different ways to combine MAC h® with encrypted message
€m:

e(m) | h*(m)

elm | h(m)]

e(m) | h*(e(m))

only last composition is safe!
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Observations:

hash functions and MACs are the
content of plain text message m a-priori

different ways to combine MAC h® with encrypted message
em:

e(m) | h*(m)

elm | h(m)]

e(m) | h*(e(m))

only last composition is safe!

Example: message m, MAC h®, ciphertexts e;(m), ex(m)
although e;(m) # ex(m), the MAC h*(m) is equal!

allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29



Workshop challenges

April 27, 2024 FAUST Cryptography Workshop 25 /29



Length extension attack
authenticate as user to get the flag
use length extension attack to forge a valid login token
think about the padding!
used hash function is SHA256
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Length extension attack
authenticate as user to get the flag
use length extension attack to forge a valid login token
think about the padding!
used hash function is SHA256

Unhiding MAC
all communication is encrypted in this service
look at the source code!
server computes HMAC of plaintext, then concatenates with
ciphertext
secret for HMAC is not known
deduce information from the MACs sent by the server to win
flag
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How to compute hash values in Python %f)

Example for SHA256:

>>> import hashlib

>>> hashlib.sha256(b"Data as bytestring").digest()

b' \x0f \xff\xba\x14\x05$5\xc8\xaf\xed6$=\xd5\xb9w\xda
\xc1@\xfa\xaf>\xdfL\\\xOb\x0e\xcf\x04\x89VR'

>>> hashlib.sha256(b"Data as bytestring") .hexdigest()
'0f£ffbal14052435c8afed36243dd5b977dac140faaf3edf4c5c0b0ecf04895652"
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Get started:

Hash function challenges:
https://workshop.faust.ninja/challenges

Presentation slides:
https://www.studon.fau.de/crs5693797.html

If you are stuck: Ask us any time!
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Links to useful websites with more information:
Merkle-Damgard construction
Information on SHA-2 hash functions
Padding in cryptography
Message authentication code
HMACs
Length extension attack
Stack overflow discussion on MAC composition

The Cryptographic Doom Principle
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https://en.wikipedia.org/wiki/Merkle%E2%80%93Damg%C3%A5rd_construction
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Padding_(cryptography)
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/Length_extension_attack
https://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html
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