
FAUST Cryptography Workshop
Hash functions and MACs

April 27, 2024

Daniel Tenbrinck

Outline

Introduction

Compression and hash functions

Message authentication codes (MACs)

Workshop challenges

April 27, 2024 FAUST Cryptography Workshop 2 / 29

Introduction

April 27, 2024 FAUST Cryptography Workshop 3 / 29

What is a hash?

The word hash is a little bit ambiguous...

This presentation is about cryptographic hash functions, e.g.,
MD5, SHA256, . . .

Example:

Hash(”Your silly string could be here!”) → 29c5963522fbf 955f 9...

April 27, 2024 FAUST Cryptography Workshop 4 / 29

What is a hash?

The word hash is a little bit ambiguous...

This presentation is about cryptographic hash functions, e.g.,
MD5, SHA256, . . .

Example:

Hash(”Your silly string could be here!”) → 29c5963522fbf 955f 9...

April 27, 2024 FAUST Cryptography Workshop 4 / 29

What is a hash?

The word hash is a little bit ambiguous...

This presentation is about cryptographic hash functions, e.g.,
MD5, SHA256, . . .

Example:

Hash(”Your silly string could be here!”) → 29c5963522fbf 955f 9...

April 27, 2024 FAUST Cryptography Workshop 4 / 29

What is a hash?

The word hash is a little bit ambiguous...

This presentation is about cryptographic hash functions, e.g.,
MD5, SHA256, . . .

Example:

Hash(”Your silly string could be here!”) → 29c5963522fbf 955f 9...

April 27, 2024 FAUST Cryptography Workshop 4 / 29

Why do we need cryptographic hash functions?

Hash functions are an important tool for various information
security applications, e.g.,

• data integrity validation

→ data fingerprinting to check for modifications

→ checksum to detect data corruption

• authenticity

→ digital signatures, message authentication codes (MACs)

→ secure password storage

April 27, 2024 FAUST Cryptography Workshop 5 / 29

Why do we need cryptographic hash functions?

Hash functions are an important tool for various information
security applications, e.g.,

• data integrity validation

→ data fingerprinting to check for modifications

→ checksum to detect data corruption

• authenticity

→ digital signatures, message authentication codes (MACs)

→ secure password storage

April 27, 2024 FAUST Cryptography Workshop 5 / 29

Why do we need cryptographic hash functions?

Hash functions are an important tool for various information
security applications, e.g.,

• data integrity validation

→ data fingerprinting to check for modifications

→ checksum to detect data corruption

• authenticity

→ digital signatures, message authentication codes (MACs)

→ secure password storage

April 27, 2024 FAUST Cryptography Workshop 5 / 29

Motivation

Scenario:

• Alice wants to send a plain text message m to Bob:

m := ”Your new bridge is beautiful!”

• Hacker performs MITM attack and alters the message to:

m′ := ”Your new bridge is ugly!”

m
m m′

April 27, 2024 FAUST Cryptography Workshop 6 / 29

Motivation

Scenario:

• Alice wants to send a plain text message m to Bob:

m := ”Your new bridge is beautiful!”

• Hacker performs MITM attack and alters the message to:

m′ := ”Your new bridge is ugly!”

m
m m′

April 27, 2024 FAUST Cryptography Workshop 6 / 29

Motivation

Scenario:

• Alice wants to send a plain text message m to Bob:

m := ”Your new bridge is beautiful!”

• Hacker performs MITM attack and alters the message to:

m′ := ”Your new bridge is ugly!”

m
m m′

April 27, 2024 FAUST Cryptography Workshop 6 / 29

Compression and hash functions

April 27, 2024 FAUST Cryptography Workshop 7 / 29

Compression functions

Mathematical setting:

• let Σ be a finite set of characters encoding our messages

→ e.g., latin alphabet, hexadecimal encoding

→ often we assume a binary encoding, i.e., Σ = {0, 1}

• we define a compression function c as a map:

c : Σn → Σk , n > k .

• that means we compress the information of a word w ∈ Σn by
compressing it to a smaller word w ′ =: c(w) ∈ Σk

Example: Binary checksum of words with length 4.

”0101” → ”0”, ”1011” → ”1”

April 27, 2024 FAUST Cryptography Workshop 8 / 29

Compression functions

Mathematical setting:

• let Σ be a finite set of characters encoding our messages

→ e.g., latin alphabet, hexadecimal encoding

→ often we assume a binary encoding, i.e., Σ = {0, 1}
• we define a compression function c as a map:

c : Σn → Σk , n > k .

• that means we compress the information of a word w ∈ Σn by
compressing it to a smaller word w ′ =: c(w) ∈ Σk

Example: Binary checksum of words with length 4.

”0101” → ”0”, ”1011” → ”1”

April 27, 2024 FAUST Cryptography Workshop 8 / 29

Compression functions

Mathematical setting:

• let Σ be a finite set of characters encoding our messages

→ e.g., latin alphabet, hexadecimal encoding

→ often we assume a binary encoding, i.e., Σ = {0, 1}
• we define a compression function c as a map:

c : Σn → Σk , n > k .

• that means we compress the information of a word w ∈ Σn by
compressing it to a smaller word w ′ =: c(w) ∈ Σk

Example: Binary checksum of words with length 4.

”0101” → ”0”, ”1011” → ”1”

April 27, 2024 FAUST Cryptography Workshop 8 / 29

Hash functions

Mathematical setting:

• we define a hash function h as a map:

h : Σ∗ → Σk

• that means we map words w ∈ Σ∗ of variable size to a word
w ′ =: h(w) ∈ Σk of fixed length

Example: Last byte of a word with variable length

”110101” → ”1”, ”100” → ”0”

April 27, 2024 FAUST Cryptography Workshop 9 / 29

Observations on compression/hash functions

Observation:
It becomes clear that both compression and hash functions are not
injective, because they map a large set to a smaller set.
This inevitably leads to collisions, i.e., different words being
mapped to the same value.

Example: Binary checksum of words with length 4.

”1101” → ”1”, ”1000” → ”1”

April 27, 2024 FAUST Cryptography Workshop 10 / 29

Cryptographic compression/hash functions

To use compression or hash functions for cryptography they have
to fulfill certain criteria:

• computing a hash value h(m) from a given message m ∈ Σ∗ is
efficient

• finding collisions is numerically unfeasible

→ computing m,m′ ∈ Σ∗ with h(m) = h(m′) impracticable

• generated hash values should be pseudo-random

→ small changes should lead to completely different values

April 27, 2024 FAUST Cryptography Workshop 11 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• partition message m ∈ Σ∗ in N ∈ N words, each of size n:

m = m1|m2| . . . |mN

+ p

• add appropriate padding p at the end

→ e.g., use zeros + binary encoding of message length |m|

• now compression function c can be applied to every block

April 27, 2024 FAUST Cryptography Workshop 12 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• partition message m ∈ Σ∗ in N ∈ N words, each of size n:

m = m1|m2| . . . |mN

+ p

• add appropriate padding p at the end

→ e.g., use zeros + binary encoding of message length |m|

• now compression function c can be applied to every block

April 27, 2024 FAUST Cryptography Workshop 12 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• partition message m ∈ Σ∗ in N ∈ N words, each of size n:

m = m1|m2| . . . |mN + p

• add appropriate padding p at the end

→ e.g., use zeros + binary encoding of message length |m|

• now compression function c can be applied to every block

April 27, 2024 FAUST Cryptography Workshop 12 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• partition message m ∈ Σ∗ in N ∈ N words, each of size n:

m = m1|m2| . . . |mN + p

• add appropriate padding p at the end

→ e.g., use zeros + binary encoding of message length |m|

• now compression function c can be applied to every block

April 27, 2024 FAUST Cryptography Workshop 12 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• choose initialization vector (IV), e.g., IV := 0n

• successively apply c to message block mi ∈ Σn combined
with last result ci−1 := c(mi−1), e.g., ci = mi ⊕ ci−1

• result of last block cN defines output of hash function for
message m, i.e., h(m) = hm := cN

cIV

m1

c1
c

m2

c2
c

m3

· · ·
cN−1

c

mN + p

hm

April 27, 2024 FAUST Cryptography Workshop 13 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• choose initialization vector (IV), e.g., IV := 0n

• successively apply c to message block mi ∈ Σn combined
with last result ci−1 := c(mi−1), e.g., ci = mi ⊕ ci−1

• result of last block cN defines output of hash function for
message m, i.e., h(m) = hm := cN

cIV

m1

c1
c

m2

c2
c

m3

· · ·
cN−1

c

mN + p

hm

April 27, 2024 FAUST Cryptography Workshop 13 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• choose initialization vector (IV), e.g., IV := 0n

• successively apply c to message block mi ∈ Σn combined
with last result ci−1 := c(mi−1), e.g., ci = mi ⊕ ci−1

• result of last block cN defines output of hash function for
message m, i.e., h(m) = hm := cN

cIV

m1

c1
c

m2

c2
c

m3

· · ·
cN−1

c

mN + p

hm

April 27, 2024 FAUST Cryptography Workshop 13 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• choose initialization vector (IV), e.g., IV := 0n

• successively apply c to message block mi ∈ Σn combined
with last result ci−1 := c(mi−1), e.g., ci = mi ⊕ ci−1

• result of last block cN defines output of hash function for
message m, i.e., h(m) = hm := cN

cIV

m1

c1
c

m2

c2
c

m3

· · ·
cN−1

c

mN + p

hm

April 27, 2024 FAUST Cryptography Workshop 13 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• choose initialization vector (IV), e.g., IV := 0n

• successively apply c to message block mi ∈ Σn combined
with last result ci−1 := c(mi−1), e.g., ci = mi ⊕ ci−1

• result of last block cN defines output of hash function for
message m, i.e., h(m) = hm := cN

cIV

m1

c1
c

m2

c2
c

m3

· · ·
cN−1

c

mN + p

hm

April 27, 2024 FAUST Cryptography Workshop 13 / 29

Merkle-Damg̊ard construction

Question: Can we construct a hash function h from a
cryptographic compression function c : Σn → Σk , n > k?

Idea:

• choose initialization vector (IV), e.g., IV := 0n

• successively apply c to message block mi ∈ Σn combined
with last result ci−1 := c(mi−1), e.g., ci = mi ⊕ ci−1

• result of last block cN defines output of hash function for
message m, i.e., h(m) = hm := cN

cIV

m1

c1
c

m2

c2
c

m3

· · ·
cN−1

c

mN + p

hm

April 27, 2024 FAUST Cryptography Workshop 13 / 29

Message + hash value

Scenario:

• Alice sends a plain text message m together with its hash
value hm =: h(m) to Bob:

m := ”Your new bridge is beautiful!”, hm = e4689a1

• Hacker performs MITM attack and alters the message to:

m′ := ”Your new bridge is ugly!”

m|hm

m|hm m′|hm

April 27, 2024 FAUST Cryptography Workshop 14 / 29

Message + hash value

Scenario:

• Alice sends a plain text message m together with its hash
value hm =: h(m) to Bob:

m := ”Your new bridge is beautiful!”, hm = e4689a1

• Hacker performs MITM attack and alters the message to:

m′ := ”Your new bridge is ugly!”

m|hm

m|hm m′|hm

April 27, 2024 FAUST Cryptography Workshop 14 / 29

Message + hash value

Scenario:

• Alice sends a plain text message m together with its hash
value hm =: h(m) to Bob:

m := ”Your new bridge is beautiful!”, hm = e4689a1

• Hacker performs MITM attack and alters the message to:

m′ := ”Your new bridge is ugly!”

m|hm

m|hm m′|hm

April 27, 2024 FAUST Cryptography Workshop 14 / 29

Message + hash value

Scenario:

• Bob receives the message m′ and computes its hash value
hm′ =: h(m′) as:

m′ := ”Your new bridge is ugly!”, h′m = 54c8b30

• Bob realizes the message has been modified because:

hm = e4689a1 ̸= 54c8b30 = hm′

m|hm

m|hm m′|hm

April 27, 2024 FAUST Cryptography Workshop 14 / 29

Message + hash value

Scenario:

• Bob receives the message m′ and computes its hash value
hm′ =: h(m′) as:

m′ := ”Your new bridge is ugly!”, h′m = 54c8b30

• Bob realizes the message has been modified because:

hm = e4689a1 ̸= 54c8b30 = hm′

m|hm

m|hm m′|hm

April 27, 2024 FAUST Cryptography Workshop 14 / 29

Message + hash value

Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.

m|hm

April 27, 2024 FAUST Cryptography Workshop 15 / 29

Message + hash value

Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.

m|hm

April 27, 2024 FAUST Cryptography Workshop 15 / 29

Message + hash value

Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.

m|hm m′|hm

April 27, 2024 FAUST Cryptography Workshop 15 / 29

Message + hash value

Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.

m|hm m′|hm′

April 27, 2024 FAUST Cryptography Workshop 15 / 29

Message authentication codes (MACs)

April 27, 2024 FAUST Cryptography Workshop 16 / 29

Cryptographic hash functions for authentication

Question:
How can Bob know that the message is really from Alice?

Idea: We need to add some secret s to the hash function
that only Alice and Bob know.

Secret s

April 27, 2024 FAUST Cryptography Workshop 17 / 29

Cryptographic hash functions for authentication

Question:
How can Bob know that the message is really from Alice?

Idea: We need to add some secret s to the hash function
that only Alice and Bob know.

Secret s

April 27, 2024 FAUST Cryptography Workshop 17 / 29

Cryptographic hash functions for authentication

Question:
How can Bob know that the message is really from Alice?

Idea: We need to add some secret s to the hash function
that only Alice and Bob know.

Secret s

April 27, 2024 FAUST Cryptography Workshop 17 / 29

Message authentication codes (MACs)

Mathematical setting:

• we define a parametrized hash function hs as a map:

hs : S × Σ∗ → Σk

• here S is a key space from which we can choose a secret key s

• since the key s is unknown to externals hs is called message
authentication code (MAC)

Example: Secret key s ∈ S is prepended to the message m ∈ Σ∗

prior to computing a hash value via h, i.e.,

hs(m) := h(s|m) = hsm

April 27, 2024 FAUST Cryptography Workshop 18 / 29

Message authentication codes (MACs)

Mathematical setting:

• we define a parametrized hash function hs as a map:

hs : S × Σ∗ → Σk

• here S is a key space from which we can choose a secret key s

• since the key s is unknown to externals hs is called message
authentication code (MAC)

Example: Secret key s ∈ S is prepended to the message m ∈ Σ∗

prior to computing a hash value via h, i.e.,

hs(m) := h(s|m) = hsm

April 27, 2024 FAUST Cryptography Workshop 18 / 29

Message authentication codes (MACs)

Mathematical setting:

• we define a parametrized hash function hs as a map:

hs : S × Σ∗ → Σk

• here S is a key space from which we can choose a secret key s

• since the key s is unknown to externals hs is called message
authentication code (MAC)

Example: Secret key s ∈ S is prepended to the message m ∈ Σ∗

prior to computing a hash value via h, i.e.,

hs(m) := h(s|m) = hsm

April 27, 2024 FAUST Cryptography Workshop 18 / 29

Message + MAC

Scenario:

• Alice sends a plain text message m together with its MAC
using the secret s ∈ S as hsm =: hs(m) to Bob:

m := ”Your new bridge is beautiful!”, hsm = fa461b
• Hacker performs MITM attack and alters the message to:

m′ := ”Your new bridge is ugly!”
• Hacker doesn’t know the secret s ∈ S and guesses g ∈ S
generating the MAC hgm′ = 40afde

m|hsm

m|hsm m′|hgm′

April 27, 2024 FAUST Cryptography Workshop 19 / 29

Message + MAC

Scenario:
• Alice sends a plain text message m together with its MAC

using the secret s ∈ S as hsm =: hs(m) to Bob:
m := ”Your new bridge is beautiful!”, hsm = fa461b

• Hacker performs MITM attack and alters the message to:
m′ := ”Your new bridge is ugly!”

• Hacker doesn’t know the secret s ∈ S and guesses g ∈ S
generating the MAC hgm′ = 40afde

m|hsm

m|hsm m′|hgm′

April 27, 2024 FAUST Cryptography Workshop 19 / 29

Message + MAC

Scenario:
• Alice sends a plain text message m together with its MAC

using the secret s ∈ S as hsm =: hs(m) to Bob:
m := ”Your new bridge is beautiful!”, hsm = fa461b

• Hacker performs MITM attack and alters the message to:
m′ := ”Your new bridge is ugly!”

• Hacker doesn’t know the secret s ∈ S and guesses g ∈ S
generating the MAC hgm′ = 40afde

m|hsm

m|hsm m′|hgm′

April 27, 2024 FAUST Cryptography Workshop 19 / 29

Message + MAC

Scenario:

• Bob receives the message m′ and computes its MAC using
the secret s ∈ S as hsm′ =: hs(m′):

m′ := ”Your new bridge is ugly!”, hsm′ = 34da47

• Bob realizes the message was not sent from Alice because:

hsm′ = 34da47 ̸= 40afde = hgm′

m|hsm

m|hsm m′|hgm′

April 27, 2024 FAUST Cryptography Workshop 19 / 29

Message + MAC

Scenario:

• Bob receives the message m′ and computes its MAC using
the secret s ∈ S as hsm′ =: hs(m′):

m′ := ”Your new bridge is ugly!”, hsm′ = 34da47

• Bob realizes the message was not sent from Alice because:

hsm′ = 34da47 ̸= 40afde = hgm′

m|hsm

m|hsm m′|hgm′

April 27, 2024 FAUST Cryptography Workshop 19 / 29

Length extension attack

Question: Are Alice and Bob now safe from the hacker?

Answer: Unfortunately not, if:

1. the hash function in the used MAC is based on the
Merkle-Damg̊ard construction

2. the secret is prepended to the message

Then, the hacker can perform a length extension attack and
forge a message with valid MAC without knowing the secret.

April 27, 2024 FAUST Cryptography Workshop 20 / 29

Length extension attack

Question: Are Alice and Bob now safe from the hacker?

Answer: Unfortunately not, if:

1. the hash function in the used MAC is based on the
Merkle-Damg̊ard construction

2. the secret is prepended to the message

Then, the hacker can perform a length extension attack and
forge a message with valid MAC without knowing the secret.

April 27, 2024 FAUST Cryptography Workshop 20 / 29

Length extension attack

Question: Are Alice and Bob now safe from the hacker?

Answer: Unfortunately not, if:

1. the hash function in the used MAC is based on the
Merkle-Damg̊ard construction

2. the secret is prepended to the message

Then, the hacker can perform a length extension attack and
forge a message with valid MAC without knowing the secret.

April 27, 2024 FAUST Cryptography Workshop 20 / 29

Length extension attack

Assumptions:

• hs is a MAC that prepends the secret s ∈ S and has a known
Merkle-Damg̊ard hash function and padding p

• hsm := h(s|m|p) is MAC for original message m

Goal: Forge a valid MAC for an extended message m := m|e

Example:

m: amount=1000&receiver=bob

hsm = h(s|m|p) = 7b2f 60

m: amount=1000&receiver=bobby

April 27, 2024 FAUST Cryptography Workshop 21 / 29

Length extension attack

Assumptions:

• hs is a MAC that prepends the secret s ∈ S and has a known
Merkle-Damg̊ard hash function and padding p

• hsm := h(s|m|p) is MAC for original message m

Goal: Forge a valid MAC for an extended message m := m|e

Example:

m: amount=1000&receiver=bob

hsm = h(s|m|p) = 7b2f 60

m: amount=1000&receiver=bobby

April 27, 2024 FAUST Cryptography Workshop 21 / 29

Length extension attack

Assumptions:

• hs is a MAC that prepends the secret s ∈ S and has a known
Merkle-Damg̊ard hash function and padding p

• hsm := h(s|m|p) is MAC for original message m

Goal: Forge a valid MAC for an extended message m := m|e

Example:

m: amount=1000&receiver=bob

hsm = h(s|m|p) = 7b2f 60

m: amount=1000&receiver=bobby

April 27, 2024 FAUST Cryptography Workshop 21 / 29

Length extension attack

Question: How to forge a valid MAC for the extended message m?

• s is included in observed MAC hsm → use hsm as input for
compression function c in Merkle-Damg̊ard hash function

• hsm = h(s|m|p), but we don’t know length of s and p:

hsm = h(s|m1|m2| · · · |mN |p)

• use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hsm

cIV

s +m1

. . . c

mN + p

hsm
c

e1

· · · c

ek + p

hsm

April 27, 2024 FAUST Cryptography Workshop 22 / 29

Length extension attack

Question: How to forge a valid MAC for the extended message m?

• s is included in observed MAC hsm → use hsm as input for
compression function c in Merkle-Damg̊ard hash function

• hsm = h(s|m|p), but we don’t know length of s and p:

hsm = h(s|m1|m2| · · · |mN |p)

• use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hsm

cIV

s +m1

. . . c

mN + p

hsm
c

e1

· · · c

ek + p

hsm

April 27, 2024 FAUST Cryptography Workshop 22 / 29

Length extension attack

Question: How to forge a valid MAC for the extended message m?

• s is included in observed MAC hsm → use hsm as input for
compression function c in Merkle-Damg̊ard hash function

• hsm = h(s|m|p), but we don’t know length of s and p:

hsm = h(s|m1|m2| · · · |mN |p)

• use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hsm

cIV

s +m1

. . . c

mN + p

hsm
c

e1

· · · c

ek + p

hsm

April 27, 2024 FAUST Cryptography Workshop 22 / 29

Length extension attack

Question: How to forge a valid MAC for the extended message m?

• s is included in observed MAC hsm → use hsm as input for
compression function c in Merkle-Damg̊ard hash function

• hsm = h(s|m|p), but we don’t know length of s and p:

hsm = h(s|m1|m2| · · · |mN |p)

• use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hsm

cIV

s +m1

. . . c

mN + p

hsm
c

e1

· · · c

ek + p

hsm

April 27, 2024 FAUST Cryptography Workshop 22 / 29

Length extension attack

Question: How to forge a valid MAC for the extended message m?

• s is included in observed MAC hsm → use hsm as input for
compression function c in Merkle-Damg̊ard hash function

• hsm = h(s|m|p), but we don’t know length of s and p:

hsm = h(s|m1|m2| · · · |mN |p)

• use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hsm

cIV

s +m1

. . . c

mN + p

hsm
c

e1

· · · c

ek + p

hsm

April 27, 2024 FAUST Cryptography Workshop 22 / 29

Length extension attack

Question: How to forge a valid MAC for the extended message m?

• s is included in observed MAC hsm → use hsm as input for
compression function c in Merkle-Damg̊ard hash function

• hsm = h(s|m|p), but we don’t know length of s and p:

hsm = h(s|m1|m2| · · · |mN |p)

• use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hsm

cIV

s +m1

. . . c

mN + p

hsm
c

e1

· · · c

ek + p

hsm

April 27, 2024 FAUST Cryptography Workshop 22 / 29

Length extension attack

Question: How to forge a valid MAC for the extended message m?

• s is included in observed MAC hsm → use hsm as input for
compression function c in Merkle-Damg̊ard hash function

• hsm = h(s|m|p), but we don’t know length of s and p:

hsm = h(s|m1|m2| · · · |mN |p)

• use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hsm

cIV

s +m1

. . . c

mN + p

hsm
c

e1

· · · c

ek + p

hsm

April 27, 2024 FAUST Cryptography Workshop 22 / 29

HMAC

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
more sophisticated way to compute a hash-based message
authentication code (HMAC).

HMAC(s,m) := h [s ⊕ opad | h(s ⊕ ipad |m)]

• ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c . . . 0x5c , opad = 0x36 . . . 0x36

• works with any cryptographic hash function h

• proposed in RFC2104

April 27, 2024 FAUST Cryptography Workshop 23 / 29

HMAC

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
more sophisticated way to compute a hash-based message
authentication code (HMAC).

HMAC(s,m) := h [s ⊕ opad | h(s ⊕ ipad |m)]

• ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c . . . 0x5c , opad = 0x36 . . . 0x36

• works with any cryptographic hash function h

• proposed in RFC2104

April 27, 2024 FAUST Cryptography Workshop 23 / 29

HMAC

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
more sophisticated way to compute a hash-based message
authentication code (HMAC).

HMAC(s,m) := h [s ⊕ opad | h(s ⊕ ipad |m)]

• ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c . . . 0x5c , opad = 0x36 . . . 0x36

• works with any cryptographic hash function h

• proposed in RFC2104

April 27, 2024 FAUST Cryptography Workshop 23 / 29

HMAC

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
more sophisticated way to compute a hash-based message
authentication code (HMAC).

HMAC(s,m) := h [s ⊕ opad | h(s ⊕ ipad |m)]

• ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c . . . 0x5c , opad = 0x36 . . . 0x36

• works with any cryptographic hash function h

• proposed in RFC2104

April 27, 2024 FAUST Cryptography Workshop 23 / 29

HMAC

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
more sophisticated way to compute a hash-based message
authentication code (HMAC).

HMAC(s,m) := h [s ⊕ opad | h(s ⊕ ipad |m)]

• ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c . . . 0x5c , opad = 0x36 . . . 0x36

• works with any cryptographic hash function h

• proposed in RFC2104

April 27, 2024 FAUST Cryptography Workshop 23 / 29

MAC composition

Observations:

• hash functions and MACs are not supposed to hide the
content of plain text message m a-priori

• different ways to combine MAC hs with encrypted message
em:

Encrypt-and-MAC: e(m) | hs(m)

MAC-then-Encrypt: e[m | hs(m)]

Encrypt-then-MAC: e(m) | hs(e(m))

• only last composition is safe!

Example: message m, MAC hs , ciphertexts e1(m), e2(m)

• although e1(m) ̸= e2(m), the MAC hs(m) is equal!

• allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29

MAC composition

Observations:

• hash functions and MACs are not supposed to hide the
content of plain text message m a-priori

• different ways to combine MAC hs with encrypted message
em:

Encrypt-and-MAC: e(m) | hs(m)

MAC-then-Encrypt: e[m | hs(m)]

Encrypt-then-MAC: e(m) | hs(e(m))

• only last composition is safe!

Example: message m, MAC hs , ciphertexts e1(m), e2(m)

• although e1(m) ̸= e2(m), the MAC hs(m) is equal!

• allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29

MAC composition

Observations:

• hash functions and MACs are not supposed to hide the
content of plain text message m a-priori

• different ways to combine MAC hs with encrypted message
em:

Encrypt-and-MAC: e(m) | hs(m)

MAC-then-Encrypt: e[m | hs(m)]

Encrypt-then-MAC: e(m) | hs(e(m))

• only last composition is safe!

Example: message m, MAC hs , ciphertexts e1(m), e2(m)

• although e1(m) ̸= e2(m), the MAC hs(m) is equal!

• allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29

MAC composition

Observations:

• hash functions and MACs are not supposed to hide the
content of plain text message m a-priori

• different ways to combine MAC hs with encrypted message
em:

Encrypt-and-MAC: e(m) | hs(m)

MAC-then-Encrypt: e[m | hs(m)]

Encrypt-then-MAC: e(m) | hs(e(m))

• only last composition is safe!

Example: message m, MAC hs , ciphertexts e1(m), e2(m)

• although e1(m) ̸= e2(m), the MAC hs(m) is equal!

• allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29

MAC composition

Observations:

• hash functions and MACs are not supposed to hide the
content of plain text message m a-priori

• different ways to combine MAC hs with encrypted message
em:

Encrypt-and-MAC: e(m) | hs(m)

MAC-then-Encrypt: e[m | hs(m)]

Encrypt-then-MAC: e(m) | hs(e(m))

• only last composition is safe!

Example: message m, MAC hs , ciphertexts e1(m), e2(m)

• although e1(m) ̸= e2(m), the MAC hs(m) is equal!

• allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29

MAC composition

Observations:

• hash functions and MACs are not supposed to hide the
content of plain text message m a-priori

• different ways to combine MAC hs with encrypted message
em:

Encrypt-and-MAC: e(m) | hs(m)

MAC-then-Encrypt: e[m | hs(m)]

Encrypt-then-MAC: e(m) | hs(e(m))

• only last composition is safe!

Example: message m, MAC hs , ciphertexts e1(m), e2(m)

• although e1(m) ̸= e2(m), the MAC hs(m) is equal!

• allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29

MAC composition

Observations:

• hash functions and MACs are not supposed to hide the
content of plain text message m a-priori

• different ways to combine MAC hs with encrypted message
em:

Encrypt-and-MAC: e(m) | hs(m)

MAC-then-Encrypt: e[m | hs(m)]

Encrypt-then-MAC: e(m) | hs(e(m))

• only last composition is safe!

Example: message m, MAC hs , ciphertexts e1(m), e2(m)

• although e1(m) ̸= e2(m), the MAC hs(m) is equal!

• allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29

Workshop challenges

April 27, 2024 FAUST Cryptography Workshop 25 / 29

Hands-on: Hash function challenges

Length extension attack

• authenticate as user Administrator to get the flag

• use length extension attack to forge a valid login token

• think about the padding!

• used hash function is SHA256

Unhiding MAC

• all communication is encrypted in this service

• look at the source code!

• server computes HMAC of plaintext, then concatenates with
ciphertext

• secret for HMAC is not known

• deduce information from the MACs sent by the server to win
flag

April 27, 2024 FAUST Cryptography Workshop 26 / 29

Hands-on: Hash function challenges

Length extension attack

• authenticate as user Administrator to get the flag

• use length extension attack to forge a valid login token

• think about the padding!

• used hash function is SHA256

Unhiding MAC

• all communication is encrypted in this service

• look at the source code!

• server computes HMAC of plaintext, then concatenates with
ciphertext

• secret for HMAC is not known

• deduce information from the MACs sent by the server to win
flag

April 27, 2024 FAUST Cryptography Workshop 26 / 29

How to compute hash values in Python

Example for SHA256:

>>> import hashlib

>>> hashlib.sha256(b"Data as bytestring").digest()

b'\x0f\xff\xba\x14\x05$5\xc8\xaf\xed6$=\xd5\xb9w\xda

\xc1@\xfa\xaf>\xdfL\\\x0b\x0e\xcf\x04\x89VR'

>>> hashlib.sha256(b"Data as bytestring").hexdigest()

'0fffba14052435c8afed36243dd5b977dac140faaf3edf4c5c0b0ecf04895652'

April 27, 2024 FAUST Cryptography Workshop 27 / 29

Let’s gooooo!!!

Get started:

• Hash function challenges:
https://workshop.faust.ninja/challenges

• Presentation slides:
https://www.studon.fau.de/crs5693797.html

If you are stuck: Ask us any time!

April 27, 2024 FAUST Cryptography Workshop 28 / 29

https://workshop.faust.ninja/challenges
https://www.studon.fau.de/crs5693797.html

Resources on cryptographic hash functions

Links to useful websites with more information:

• Merkle-Damgard construction

• Information on SHA-2 hash functions

• Padding in cryptography

• Message authentication code

• HMACs

• Length extension attack

• Stack overflow discussion on MAC composition

• The Cryptographic Doom Principle

April 27, 2024 FAUST Cryptography Workshop 29 / 29

https://en.wikipedia.org/wiki/Merkle%E2%80%93Damg%C3%A5rd_construction
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Padding_(cryptography)
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/Length_extension_attack
https://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html

	Introduction
	Compression and hash functions
	Message authentication codes (MACs)
	Workshop challenges

