FAUST Cryptography Workshop
Hash functions and MACs

April 27, 2024

Daniel Tenbrinck

/- /Ead

Outline

Introduction

Compression and hash functions

Message authentication codes (MACs)

Workshop challenges

April 27, 2024 FAUST Cryptography Workshop

2 /29

Introduction

April 27, 2024 FAUST Cryptography Workshop 3 /29

N

The word hash is a little bit

April 27, 2024 FAUST Cryptography Workshop 4 /29

What is a hash? @

The word hash is a little bit

April 27, 2024 FAUST Cryptography Workshop 4 /29

What is a hash? @

The word hash is a little bit

This presentation is about , e.g.,
MD5, SHA256, . ..

April 27, 2024 FAUST Cryptography Workshop 4 /29

What is a hash? @

The word hash is a little bit

This presentation is about , e.g.,
MD5, SHA256, . ..

Example:

Hash(" Your silly string could be here!”) — 29¢5963522/bf955f9...

April 27, 2024 FAUST Cryptography Workshop 4 /29

Why do we need cryptographic hash functions? &Q

Hash functions are an for various information
security applications, e.g.,

April 27, 2024 FAUST Cryptography Workshop 5 /29

Hash functions are an for various information
security applications, e.g.,

data integrity validation
— data fingerprinting to check for modifications
— checksum to detect data corruption

April 27, 2024 FAUST Cryptography Workshop

5 /29

4 {\
\Z
D

,
[
AN

Hash functions are an for various information
security applications, e.g.,

data integrity validation

— data fingerprinting to check for modifications

— checksum to detect data corruption

authenticity

— digital signatures, message authentication codes (MACs)

—r Secure password storage

April 27, 2024 FAUST Cryptography Workshop 5 /29

Scenario:

April 27, 2024 FAUST Cryptography Workshop 6 /29

&/

Scenario:
Alice wants to send a plain text message m to Bob:

m := "Your new bridge is beautiful!”

April 27, 2024 FAUST Cryptography Workshop 6 /29

Scenario:
Alice wants to send a plain text message m to Bob:
m := "Your new bridge is beautiful!”
Hacker performs MITM attack and alters the message to:

m'’ := "Your new bridge is 1"

April 27, 2024 FAUST Cryptography Workshop 6 /29

Compression and hash functions

April 27, 2024 FAUST Cryptography Workshop 7 /29

Mathematical setting:
let © be a finite set of characters encoding our messages
— e.g., latin alphabet, hexadecimal encoding

— often we assume a binary encoding, i.e., ¥ = {0,1}

April 27, 2024 FAUST Cryptography Workshop 8 /29

Mathematical setting:
let © be a finite set of characters encoding our messages
— e.g., latin alphabet, hexadecimal encoding
— often we assume a binary encoding, i.e., ¥ = {0,1}

we define a as a map:
B2 SET T, n> k.

that means we compress the information of a word w € ¥" by
compressing it to a smaller word w’ =: c(w) € £k

April 27, 2024 FAUST Cryptography Workshop 8 /29

4 {\
\Z
D

,
[
AN

Mathematical setting:
let © be a finite set of characters encoding our messages
— e.g., latin alphabet, hexadecimal encoding
— often we assume a binary encoding, i.e., ¥ = {0,1}

we define a as a map:
B2 SET T, n> k.

that means we compress the information of a word w € ¥" by
compressing it to a smaller word w’ =: c(w) € £k

Example: Binary checksum of words with length 4.

"0101" — "0", "1011" — "1”

April 27, 2024 FAUST Cryptography Workshop 8 /29

4 {\
\Z
D

/
[
AN

Mathematical setting:

we define a as a map:
h: T — ¥k

that means we map words w € ¥* of variable size to a word
w' =: h(w) € ¥ of fixed length

Example: Last byte of a word with variable length

"110101" — "17, "100" — "0"

April 27, 2024 FAUST Cryptography Workshop 9 /29

4 {\
\Z
D

,
[
AN

Observation:

It becomes clear that both compression and hash functions are not
injective, because they map a large set to a smaller set.

This inevitably leads to , 1.e., different words being
mapped to the same value.

Example: Binary checksum of words with length 4.

"1101" — "17, "1000" — "1"

April 27, 2024 FAUST Cryptography Workshop 10 / 29

To use compression or hash functions for they have
to fulfill certain criteria:
computing a hash value h(m) from a given message m € X* is
efficient
finding is numerically unfeasible
— computing m,m" € ¥* with h(m) = h(m’) impracticable
generated hash values should be pseudo-random
— small changes should lead to completely different values

April 27, 2024 FAUST Cryptography Workshop 11 / 29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: £" — ¥X n > k?

April 27, 2024 FAUST Cryptography Workshop 12 / 29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: £" — ¥X n > k?

Idea:

partition message m € X" in N € N words, each of size n:

m = my|lmy|...|my

April 27, 2024 FAUST Cryptography Workshop 12 / 29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: £" — ¥X n > k?

Idea:

partition message m € X" in N € N words, each of size n:
m = my|lmy|...|my

add at the end

— e.g., use zeros + binary encoding of message length |m|

April 27, 2024 FAUST Cryptography Workshop 12 / 29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: £" — ¥X n > k?

Idea:

partition message m € X" in N € N words, each of size n:
m = my|lmy|...|my

add at the end

— e.g., use zeros + binary encoding of message length |m|

now compression function ¢ can be applied to every block

April 27, 2024 FAUST Cryptography Workshop 12 / 29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?

April 27, 2024 FAUST Cryptography Workshop 13 / 29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?

Idea:
choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1

April 27, 2024 FAUST Cryptography Workshop 13 /29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?

Idea:
choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1

April 27, 2024 FAUST Cryptography Workshop 13 /29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?

Idea:
choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1

m mo
IV — e — —
a @

April 27, 2024 FAUST Cryptography Workshop 13 /29

Question: Can we construct a hash function h from a
cryptographic compression function ¢: X" — ¥, n > k?

Idea:
choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1

my my mg3
IV — e — R — —
€1 %)

April 27, 2024 FAUST Cryptography Workshop 13 /29

Question: Can we construct a hash function h from a
cryptographic compression function c: ¥" — Zk, n> k?
Idea:

choose initialization vector (1V), e.g., IV := 0"

successively apply ¢ to message block m; € ¥."
with last result ¢j_1 := c(m;_1), e.g., ¢ = m; B ¢j_1

result of last block ¢y defines output of hash function for
message m, i.e., h(m) = hy, := ¢y

my my ms3 my + p
\Y, o o N1 m

April 27, 2024 FAUST Cryptography Workshop 13 /29

Scenario:

April 27, 2024 FAUST Cryptography Workshop 14 / 29

&

Scenario:

Alice sends a plain text message m together with its hash
value hp, =: h(m) to Bob:
m := "Your new bridge is beautiful!”, h,, = e4689al

m|h,,

April 27, 2024 FAUST Cryptography Workshop 14 / 29

Scenario:
Alice sends a plain text message m together with its hash
value hp, =: h(m) to Bob:
m := "Your new bridge is beautiful!”, h,, = e4689al
Hacker performs MITM attack and alters the message to:

m’ := "Your new bridge is 1"

m|hy,

April 27, 2024 FAUST Cryptography Workshop 14 / 29

a

Scenario:

Bob receives the message m’ and computes its hash value
hpy =: h(m') as:
m’ := "Your new bridge is ugly!”, h, = 54c8b30

April 27, 2024 FAUST Cryptography Workshop 14 / 29

Scenario:
Bob receives the message m’ and computes its hash value
hpy =: h(m') as:
m’ := "Your new bridge is ugly!”, h, = 54c8b30
Bob realizes the message has been because:
hn = e4689al # 54c8b30 = hyy

m'|h,,

April 27, 2024 FAUST Cryptography Workshop 14 / 29

Question: Are Alice and Bob now safe from the hacker?

April 27, 2024 FAUST Cryptography Workshop 15 / 29

Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.

April 27, 2024 FAUST Cryptography Workshop 15 / 29

Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.

April 27, 2024 FAUST Cryptography Workshop 15 / 29

Question: Are Alice and Bob now safe from the hacker?

Answer: No, the hacker can modify the hash value as well.

April 27, 2024 FAUST Cryptography Workshop 15 / 29

Message authentication codes (MACs)

April 27, 2024 FAUST Cryptography Workshop 16 / 29

Cryptographic hash functions for authentication @.@

Question:
How can Bob know that the message is really from Alice?

April 27, 2024 FAUST Cryptography Workshop 17 / 29

A

A ¢
a
Question:
How can Bob know that the message is really from Alice?
Idea: We need to to the hash function

that only Alice and Bob know.

April 27, 2024 FAUST Cryptography Workshop 17 / 29

Question:
How can Bob know that the message is really from Alice?

Idea: We need to to the hash function
that only Alice and Bob know.

Secret s

April 27, 2024 FAUST Cryptography Workshop 17 / 29

Mathematical setting:

we define a parametrized hash function h® as a map:
h: S x T* — ¥k

here S is a key space from which we can choose a secret key s

April 27, 2024 FAUST Cryptography Workshop 18 / 29

Mathematical setting:

we define a parametrized hash function h® as a map:
h: S x T* — ¥k

here S is a key space from which we can choose a secret key s

since the key s is unknown to externals h® is called

April 27, 2024 FAUST Cryptography Workshop 18 / 29

4 {\
\Z
D

,
[
AN

Mathematical setting:

we define a parametrized hash function h® as a map:
h: S x T* — ¥k

here S is a key space from which we can choose a secret key s

since the key s is unknown to externals h® is called

Example: Secret key s € S is prepended to the message m € ©*
prior to computing a hash value via h, i.e.,

h*(m) := h(s|m) = h;

m

April 27, 2024 FAUST Cryptography Workshop 18 / 29

Scenario:

FAUST Cryptography Workshop

Scenario:
Alice sends a plain text message m together with its MAC
using the secret s € S as h;, =: h°(m) to Bob:
m := "Your new bridge is beautiful!”, h;, = fa461b

m|hy,

FAUST Cryptography Workshop

Scenario:
Alice sends a plain text message m together with its MAC
using the secret s € S as h;, =: h°(m) to Bob:
m := "Your new bridge is beautiful!”, h;, = fa461b
Hacker performs MITM attack and alters the message to:
m’ := "Your new bridge is ugly!”
Hacker s € S and guesses g € S
generating the MAC h8, = 40afde

m|h,

Aprif Z7, 2024 FAUST Cryptography Workshop 19 / 29

Nar

Scenario:
Bob receives the message m’ and computes its MAC using
the secret s € S as h°, =: h*(m'):

m' := "Your new bridge is ugly!”, h®, = 34da47

April 27, 2024 FAUST Cryptography Workshop 19 / 29

Scenario:
Bob receives the message m’ and computes its MAC using
the secret s € S as h°, =: h*(m'):
m' := "Your new bridge is ugly!”, h®, = 34da47
Bob realizes the message because:
he, = 34dad7 # 40afde = hE,

m|h,

April 27, 2024 FAUST Cryptography Workshop 19 / 29

Question: Are Alice and Bob now safe from the hacker?

April 27, 2024 FAUST Cryptography Workshop 20 / 29

4 {\
\Z
D

,
[
AN

Question: Are Alice and Bob now safe from the hacker?

Answer: Unfortunately not, if:

the hash function in the used MAC is based on the
Merkle-Damgard construction

the secret is prepended to the message

April 27, 2024 FAUST Cryptography Workshop 20 / 29

&
AN

:< ;

e

Question: Are Alice and Bob now safe from the hacker?

Answer: Unfortunately not, if:

the hash function in the used MAC is based on the
Merkle-Damgard construction

the secret is prepended to the message

Then, the hacker can perform a length extension attack and
forge a message with valid MAC

April 27, 2024 FAUST Cryptography Workshop 20 / 29

4 {\
\Z
D

/
[
AN

Assumptions:

h® is a MAC that prepends the secret s € S and has a known
Merkle-Damgard hash function and padding p

hs, := h(s|m|p) is MAC for original message m

April 27, 2024 FAUST Cryptography Workshop 21 /29

4 {\
\Z
D

/
[
AN

Assumptions:

h® is a MAC that prepends the secret s € S and has a known
Merkle-Damgard hash function and padding p
hs, := h(s|m|p) is MAC for original message m

Goal: Forge a valid MAC for an m = ml|e

April 27, 2024 FAUST Cryptography Workshop 21 /29

Assumptions:

h® is a MAC that prepends the secret s € S and has a known
Merkle-Damgard hash function and padding p

hs, := h(s|m|p) is MAC for original message m

Goal: Forge a valid MAC for an m = ml|e
Example:

m: amount=1000&receiver=bob
h:, = h(s|m|p) = 7b2f60

‘m: amount=1000&receiver=bob

April 27, 2024 FAUST Cryptography Workshop 21 /29

Question: How to forge a valid MAC for the extended message m?

April 27, 2024 FAUST Cryptography Workshop 22 /29

Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function

April 27, 2024 FAUST Cryptography Workshop 22 /29

Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function

S+ m my + p
h

April 27, 2024 FAUST Cryptography Workshop 22 /29

Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function

S+m my + p €1
h

April 27, 2024 FAUST Cryptography Workshop 22 /29

Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function

s+ m my + p €1 e +p
he, "

April 27, 2024 FAUST Cryptography Workshop 22 /29

4 {\
\Z
D

/
[
AN

Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h;, — use h7, as
c in Merkle-Damgard hash function

h?, = h(s|m|p), but we don't know length of s and p:

iy = h(s[ma|ma| - |mp|r)
+ m my + €1 ek +p
m

April 27, 2024 FAUST Cryptography Workshop 22 /29

4 {\
\Z
D

,
[
AN

Question: How to forge a valid MAC for the extended message m?

s is included in observed MAC h?, — use h; as
c in Merkle-Damgard hash function

h?, = h(s|m|p), but we don't know length of s and p:

m

hy, = h(s|my|ma]---[mn|p)

use brute-force to guess needed padding p so that
m = m|p|e generates a valid MAC hz.

+ m my + €1 ek +p
he, "

April 27, 2024 FAUST Cryptography Workshop 22 /29

Question: How to protect MACs from length extension attacks?

April 27, 2024 FAUST Cryptography Workshop 23 /29

4 {\
\Z
D

,
[
AN

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
to compute a hash-based message
authentication code (HMAC).

HMAC(s, m) := /1 s ® opad | h(s @ ipad |m)

April 27, 2024 FAUST Cryptography Workshop 23 /29

4 {\
\Z
D

,
[
AN

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
to compute a hash-based message
authentication code (HMAC).

HMAC(s, m) := /1 s ® opad | h(s @ ipad |m)

ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c...0x5¢, opad = 0x36...0x36

April 27, 2024 FAUST Cryptography Workshop 23 /29

4 {\
\Z
D

,
[
AN

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
to compute a hash-based message
authentication code (HMAC).

HMAC(s, m) := /1 s ® opad | h(s @ ipad |m)

ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c...0x5¢, opad = 0x36...0x36

works with any cryptographic hash function h

April 27, 2024 FAUST Cryptography Workshop 23 /29

4 {\
\Z
D

,
[
AN

Question: How to protect MACs from length extension attacks?

Idea: Combine secret s and message m via a hash function h in a
to compute a hash-based message
authentication code (HMAC).

HMAC(s, m) := /1 s ® opad | h(s @ ipad |m)

ipad and opad are paddings with two different byte constants,
e.g., ipad = 0x5c...0x5¢, opad = 0x36...0x36

works with any cryptographic hash function h
proposed in RFC2104

April 27, 2024 FAUST Cryptography Workshop 23 /29

Observations:

hash functions and MACs are the
content of plain text message m a-priori

April 27, 2024 FAUST Cryptography Workshop 24 / 29

Observations:

hash functions and MACs are the
content of plain text message m a-priori

different ways to combine MAC h® with encrypted message
€m:

April 27, 2024 FAUST Cryptography Workshop 24 / 29

Observations:

hash functions and MACs are the
content of plain text message m a-priori

different ways to combine MAC h® with encrypted message
€m:
e(m) | h*(m)

April 27, 2024 FAUST Cryptography Workshop 24 / 29

Observations:

hash functions and MACs are the
content of plain text message m a-priori

different ways to combine MAC h® with encrypted message
€m:

e(m) | h*(m)

elm | h(m)]

April 27, 2024 FAUST Cryptography Workshop 24 / 29

A

/
[
AN

Observations:

hash functions and MACs are the
content of plain text message m a-priori

different ways to combine MAC h® with encrypted message
€m:

e(m) | h*(m)

elm | h(m)]

e(m) | h*(e(m))

April 27, 2024 FAUST Cryptography Workshop 24 / 29

A

 ,

/
[
AN

Observations:

hash functions and MACs are the
content of plain text message m a-priori

different ways to combine MAC h® with encrypted message
€m:

e(m) | h*(m)

elm | h(m)]

e(m) | h*(e(m))

only last composition is safe!

April 27, 2024 FAUST Cryptography Workshop 24 / 29

4 {\
\Z
D

,
[
AN

Observations:

hash functions and MACs are the
content of plain text message m a-priori

different ways to combine MAC h® with encrypted message
em:

e(m) | h*(m)

elm | h(m)]

e(m) | h*(e(m))

only last composition is safe!

Example: message m, MAC h®, ciphertexts e;(m), ex(m)
although e;(m) # ex(m), the MAC h*(m) is equal!

allows to correlate message content

April 27, 2024 FAUST Cryptography Workshop 24 / 29

Workshop challenges

April 27, 2024 FAUST Cryptography Workshop 25 /29

Length extension attack
authenticate as user to get the flag
use length extension attack to forge a valid login token
think about the padding!
used hash function is SHA256

April 27, 2024 FAUST Cryptography Workshop 26 / 29

4 {\
\Z
D

,
[
AN

Length extension attack
authenticate as user to get the flag
use length extension attack to forge a valid login token
think about the padding!
used hash function is SHA256

Unhiding MAC
all communication is encrypted in this service
look at the source code!
server computes HMAC of plaintext, then concatenates with
ciphertext
secret for HMAC is not known
deduce information from the MACs sent by the server to win
flag

April 27, 2024 FAUST Cryptography Workshop 26 / 29

How to compute hash values in Python %f)

Example for SHA256:

>>> import hashlib

>>> hashlib.sha256(b"Data as bytestring").digest()

b' \x0f \xff\xba\x14\x05$5\xc8\xaf\xed6$=\xd5\xb9w\xda
\xc1@\xfa\xaf>\xdfL\\\xOb\x0e\xcf\x04\x89VR'

>>> hashlib.sha256(b"Data as bytestring") .hexdigest()
'0f£ffbal14052435c8afed36243dd5b977dac140faaf3edf4c5c0b0ecf04895652"

April 27, 2024 FAUST Cryptography Workshop 27 / 29

4 {\
\Z
D

,
&
X

Get started:

Hash function challenges:
https://workshop.faust.ninja/challenges

Presentation slides:
https://www.studon.fau.de/crs5693797.html

If you are stuck: Ask us any time!

April 27, 2024 FAUST Cryptography Workshop 28 / 29

https://workshop.faust.ninja/challenges
https://www.studon.fau.de/crs5693797.html

4 {\
\Z
D

,
[
AN

Links to useful websites with more information:
Merkle-Damgard construction
Information on SHA-2 hash functions
Padding in cryptography
Message authentication code
HMACs
Length extension attack
Stack overflow discussion on MAC composition

The Cryptographic Doom Principle

April 27, 2024 FAUST Cryptography Workshop 29 / 29

https://en.wikipedia.org/wiki/Merkle%E2%80%93Damg%C3%A5rd_construction
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Padding_(cryptography)
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/Length_extension_attack
https://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html

	Introduction
	Compression and hash functions
	Message authentication codes (MACs)
	Workshop challenges

