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How it all began...

Prof. Abderrahim Elmoataz

I Initial work with A. Elmoataz, F. Lozes, and M. Toutain

I Ongoing collaboration on papers and grant proposals
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Finite weighted graphs

A finite weighted graph G = (V, E, w) consists of:
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Finite weighted graphs

A finite weighted graph G = (V, E, w) consists of:

I a finite set of vertices V = (v1, . . . , vn)
I a finite set of edges E ⊂ V × V , (u, v) ∈ E → short: u ∼ v
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Finite weighted graphs

A finite weighted graph G = (V, E, w) consists of:

I a finite set of vertices V = (v1, . . . , vn)
I a finite set of edges E ⊂ V × V , (u, v) ∈ E → short: u ∼ v

I a weight function w : E → [0, 1] with: w(u, v) > 0 ⇔ (u, v) ∈ E
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for image processing?
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for image processing?

Local neighborhood of a pixel Nonlocal neighborhood of a pixel
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for polygon mesh processing?
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for polygon mesh processing?

Polygon mesh approximation of a 3D surface.

Image courtesy: Gabriel Peyré
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for point cloud processing?

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 8/49



Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for point cloud processing?

Colored 3D point cloud data of a scanned chair.

Image courtesy: François Lozes
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for point cloud processing?

Graph construction on a 3D point cloud

Image courtesy: François Lozes
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for machine learning?
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for machine learning?

Subset of handwritten digits from USPS database [1]

[1] J. Hull: A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(5). (1994)
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Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for machine learning?

Graph construction using suitable similarity features.

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 8/49



Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for machine learning?

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 8/49



Finite weighted graphs for modeling discrete data

Question: How can we apply graphs for machine learning?

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 8/49



The graph framework

Given: Application data represented by a vertex function f : V → R
m.
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Given: Application data represented by a vertex function f : V → R
m.

Abderrahim Elmoataz:

"Le monde - c’est tout un graph."
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The graph framework

Given: Application data represented by a vertex function f : V → R
m.

Abderrahim Elmoataz:

"Le monde - c’est tout un graph."

Attention: Data so far only in Euclidean spaces!
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The graph framework

Idea: Notion of a derivative for vertex functions [2, 3].

∇f (u, v) =
√

w(u, v)
(

f (v) − f (u)
)

[2] A. Elmoataz, O. Lézoray, S. Bougleux: Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold

Processing. IEEE TIP 17 (2008)

[3] G. Gilboa, S. Osher: Nonlocal operators with applications to image processing. Multiscale Modeleling and Simulation 7 (2008)
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The graph framework

Idea: Notion of a derivative for vertex functions [2, 3].

∇f (u, v) =
√

w(u, v)
(

f (v) − f (u)
)

Special case: Finite forward differences

Let G = (V, E, w) be a directed 2-neighbour grid graph

with the weight function w chosen as:

w(u, v) =

{

1

h2 , if u ∼ v

0 , else

[2] A. Elmoataz, O. Lézoray, S. Bougleux: Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold

Processing. IEEE TIP 17 (2008)

[3] G. Gilboa, S. Osher: Nonlocal operators with applications to image processing. Multiscale Modeleling and Simulation 7 (2008)
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Translating variational problems to graphs

Idea:

Solve variational problems on graphs using convex optimization.
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Translating variational problems to graphs

Idea:

Solve variational problems on graphs using convex optimization.

Example: Rudin-Osher-Fatemi total variation (TV) denoising model [4]

Find a minimizer f : V → R of the energy functional

E(f ) = λ||f − f0||
2 + ||f ||TV , λ > 0

[4] L.I. Rudin, S. Osher, E. Fatemi: Nonlinear total variation based noise removal algorithms. Physica D 60: 259–268 (1992)
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Translating variational problems to graphs

Idea:

Solve variational problems on graphs using convex optimization.

Example: Rudin-Osher-Fatemi total variation (TV) denoising model [4]

Find a minimizer f : V → R of the energy functional

E(f ) = λ||f − f0||
2 + ||f ||TV , λ > 0

with ||f ||TV =
∑

u∈V

(

∑

v∼u

||∇f (u, v)||p
)

1

p

, 1 ≤ p < ∞

[4] L.I. Rudin, S. Osher, E. Fatemi: Nonlinear total variation based noise removal algorithms. Physica D 60: 259–268 (1992)
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Translating higher order differential operators

Idea:

Mimic important PDEs from image processing on finite weighted graphs.
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Translating higher order differential operators

Idea:

Mimic important PDEs from image processing on finite weighted graphs.

Example: The p-Laplace equation

Let Ω ⊂ R
n an open, bounded set, let 1 ≤ p < ∞ and f : Ω → R. We are interested in

a solution of the homogeneous p-Laplace equation:

∆pf (x) = − div

(

∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

p−2 ∂f

∂xi

)

(x)

= −
n
∑

i=1

(

∂

∂xi

∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

p−2 ∂f

∂xi

)

(x) = 0
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Translating higher order differential operators

Idea:

Mimic important PDEs from image processing on finite weighted graphs.

Example: The graph p-Laplace equation [5]

Let G(V, E, w) a finite weighted graph, let 1 ≤ p < ∞ and f : V → R a vertex function.

We are interested in a solution of the following finite difference equation:

∆pf (u) =
1

2
div
(

||∇f ||p−2∇f
)

(u)

= −
∑

v∼u

(w(u, v))p/2|f (v) − f (u)|p−2(f (v) − f (u)) = 0

[5] A. Elmoataz, M. Toutain, D. Tenbrinck: On the p-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data Processing.

SIAM Journal on Imaging Sciences 8 (2016)
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The graph framework

Observation:

This framework enables the translation of local/nonlocal PDEs and variational models to

any graph-structured data.
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The graph framework

Observation:

This framework enables the translation of local/nonlocal PDEs and variational models to

any graph-structured data.

Original 3D point cloud Noisy 3D point cloud

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 13/49



The graph framework

Observation:

This framework enables the translation of local/nonlocal PDEs and variational models to

any graph-structured data.

Original 3D point cloud Denoised 3D point cloud
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The graph framework

Observation:

This framework enables the translation of local/nonlocal PDEs and variational models to

any graph-structured data.

3D point cloud of a scanned person
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The graph framework

Observation:

This framework enables the translation of local/nonlocal PDEs and variational models to

any graph-structured data.

3D point cloud of a scanned person User-defined region for color inpainting
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The graph framework

Observation:

This framework enables the translation of local/nonlocal PDEs and variational models to

any graph-structured data.

3D point cloud of a scanned person Result of color inpainting (local)
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The graph framework

Observation:

This framework enables the translation of local/nonlocal PDEs and variational models to

any graph-structured data.

3D point cloud of a scanned person Result of color inpainting (nonlocal)
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How the story continued...
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The basic idea

Question: Can we apply the graph framework for manifold-valued functions?
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The basic idea

Question: Can we apply the graph framework for manifold-valued functions?

f(u)

f(v)

→ The notion of differences is not applicable to values on manifolds.
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The basic idea

Question: Can we apply the graph framework for manifold-valued functions?

f(u)

f(v)

→ The notion of differences is not applicable to values on manifolds.

Idea: We compute differences in the respective tangential space.
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Motivation

Question:

Why should one work with manifold-valued data?
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Motivation

Question:

Why should one work with manifold-valued data?

→ There are many interesting applications with values on manifolds, e.g.,

I Interferometric synthetic aperture radar (InSAR) imaging
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Motivation

Question:

Why should one work with manifold-valued data?

→ There are many interesting applications with values on manifolds, e.g.,

I Interferometric synthetic aperture radar (InSAR) imaging

I Diffusion tensor imaging (DT-MRI)
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Motivation
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I Observation: Phase signal f : [0, 1] → [−π, π] is wrapped
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Motivation
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I Problem: Traditional TV denoising is not feasible (→ large jumps)
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Motivation
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I Solution: Perform TV denoising on the Riemannian manifold S
1
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Notations on a Riemannian manifold

γ _
x,yx y

PTx→y(ν)

M

I m-dimensional complete Riemannian manifold M
I geodesic γ _

x,y on M connecting x, y ∈ M
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Notations on a Riemannian manifold

γ _
x,yx y

PTx→y(ν)

ξ
TxM

M

I tangential plane TxM at base point x ∈ M
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Notations on a Riemannian manifold

γ _
x,yx y

PTx→y(ν)

logx

ξ

logx x

TxM

M

I logarithmic map logx y : M → TxM with logx y = γ̇ _
x,y(0)
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Notations on a Riemannian manifold

γ _
x,yx y

PTx→y(ν)

expx

logx

ξ

logx x

TxM

M

I exponential map expx ξ = γ(1) = y with γ(0) = x and γ̇(0) = ξ
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Notations on a Riemannian manifold

γ _
x,yx y

PTx→y(ν)

expx

logx

ξ

logx x

TxM

M

ν
PTx→y(ν)

I parallel transport PTx→y(ν) of a tangential vector ν ∈ TxM along γ _
x,y
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Function spaces

Observation:

Let f, g : V → M and λ ∈ R. There is no reasonable definition for mathematical

expressions like f + g or λ · f .
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Function spaces

Observation:

Let f, g : V → M and λ ∈ R. There is no reasonable definition for mathematical

expressions like f + g or λ · f .

Definition: Space of vertex functions

The set of manifold-valued vertex functions

H(V ; M) := {f : V → M}

induces a metric space with the metric:

dH(V ;M)(f, g) :=
∑

u∈V

〈logf(u) g(u), logf(u) g(u)〉f(u)

=
∑

u∈V

dM(f (u), g(u))
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Function spaces

Definition: Space of edge functions

Let f ∈ H(V ; M) be a manifold-valued vertex function. Then the set of affiliated edge

functions

H(E; TfM) := {Hf : E → TM with Hf(u, v) ∈ Tf(u)M}

is a Euclidean vector space.
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Function spaces

Definition: Space of edge functions

Let f ∈ H(V ; M) be a manifold-valued vertex function. Then the set of affiliated edge

functions

H(E; TfM) := {Hf : E → TM with Hf(u, v) ∈ Tf(u)M}

is a Euclidean vector space.

Observation:

Edge functions are in general not symmetric wrt. u, v ∈ V , i.e.,

Tf(u)M 3 Hf(u, v) 6= Hf(v, u) ∈ Tf(v)M.
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Weighted local gradient

Idea:

Use local tangential spaces to measure distances between manifold values.
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Weighted local gradient

Idea:

Use local tangential spaces to measure distances between manifold values.

Definition: Weighted local gradient operator

Let f ∈ H(V ; M) be a manifold-valued vertex function. Then we can define the

weighted local gradient operator ∇ : H(V ; M) → H(E; TM) as:

∇f (u, v) :=
√

w(u, v) logf(u) f (v).
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Weighted local gradient

Idea:

Use local tangential spaces to measure distances between manifold values.

Definition: Weighted local gradient operator

Let f ∈ H(V ; M) be a manifold-valued vertex function. Then we can define the

weighted local gradient operator ∇ : H(V ; M) → H(E; TM) as:

∇f (u, v) :=
√

w(u, v) logf(u) f (v).

Observation:

The weighted local gradient is antisymmetric wrt. parallel transport, i.e.,

∇f (u, v) =
√

w(u, v) logf(u) f (v)

= −
√

w(u, v) PTf(v)→f(u) logf(v) f (u)
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Towards a divergence operator

Question:

Given the local weighted gradient operator ∇ : H(V ; M) → H(E; TM), can we give a

meaningful definition of a divergence?
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Towards a divergence operator

Question:

Given the local weighted gradient operator ∇ : H(V ; M) → H(E; TM), can we give a

meaningful definition of a divergence?

We would like to find a global adjoint operator ∇∗ : H(E; TM) → H(V ; M), which is

specified by the relation:

〈∇f, Hf〉 = 〈f, ∇∗Hf〉 for all Hf ∈ H(E; TfM)
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Towards a divergence operator

Question:

Given the local weighted gradient operator ∇ : H(V ; M) → H(E; TM), can we give a

meaningful definition of a divergence?

We would like to find a global adjoint operator ∇∗ : H(E; TM) → H(V ; M), which is

specified by the relation:

〈∇f, Hf〉 = 〈f, ∇∗Hf〉 for all Hf ∈ H(E; TfM)

Observation:

We are not able to derive a meaningful definition of the inner product on the right side of

this equation. /
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Local weighted divergence

Proposition

For f ∈ H(V ; M) and Hf ∈ H(E; TfM) we have

〈∇wf, Hf〉H(E;TfM) =
∑

u∈V

∑

v∼u

〈logf(u) f (v), − div Hf(u)〉f(u),

with the local weighted divergence div: H(E; TM) → H(V ; TM) given as

div Hf(u) :=
1

2

∑

v∼u

√

w(v, u)Hf(v, u) −
√

w(u, v)Hf(u, v)
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∑

v∼u

〈logf(u) f (v), − div Hf(u)〉f(u),

with the local weighted divergence div: H(E; TM) → H(V ; TM) given as

div Hf(u) :=
1

2

∑

v∼u

√

w(v, u)PTf(v)→f(u)Hf(v, u) −
√

w(u, v)Hf(u, v)
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Local weighted divergence

Proposition

For f ∈ H(V ; M) and Hf ∈ H(E; TfM) we have

〈∇wf, Hf〉H(E;TfM) =
∑

u∈V

∑

v∼u

〈logf(u) f (v), − div Hf(u)〉f(u),

with the local weighted divergence div: H(E; TM) → H(V ; TM) given as

div Hf(u) :=
1

2

∑

v∼u

√

w(v, u)PTf(v)→f(u)Hf(v, u) −
√

w(u, v)Hf(u, v)

Corollary

If Hf ∈ H(E; TfM) is antisymmetric wrt. the parallel transport and w : E → [0, 1] is a

symmetric weight function, we get

div Hf(u) = −
∑

v∼u

√

w(u, v)Hf(u, v).
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Towards a Laplace operator

Observation:

Let us assume a symmetric weighting function, i.e., w(u, v) = w(v, u). Then, if we put

div (∇f ) (u) =
1

2

∑

v∼u

√

w(v, u) PTf(v)→f(u)∇f (v, u)
︸ ︷︷ ︸

= −∇f(u,v)

) −
√

w(u, v)∇f (u, v)
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Towards a Laplace operator

Observation:

Let us assume a symmetric weighting function, i.e., w(u, v) = w(v, u). Then, if we put

div (∇f ) (u) =
1

2

∑

v∼u

√

w(v, u) PTf(v)→f(u)∇f (v, u)
︸ ︷︷ ︸

= −∇f(u,v)

) −
√

w(u, v)∇f (u, v)

= −
∑

v∼u

√

w(u, v)∇f (u, v) = −
∑

v∼u

w(u, v) logf(u) f (v)
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Towards a Laplace operator

Observation:

Let us assume a symmetric weighting function, i.e., w(u, v) = w(v, u). Then, if we put

div (∇f ) (u) =
1

2

∑

v∼u

√

w(v, u) PTf(v)→f(u)∇f (v, u)
︸ ︷︷ ︸

= −∇f(u,v)

) −
√

w(u, v)∇f (u, v)

= −
∑

v∼u

√

w(u, v)∇f (u, v) = −
∑

v∼u

w(u, v) logf(u) f (v)

=: ∆f (u)
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Towards a Laplace operator

Observation:

Let us assume a symmetric weighting function, i.e., w(u, v) = w(v, u). Then, if we put

div (∇f ) (u) =
1

2

∑

v∼u

√

w(v, u) PTf(v)→f(u)∇f (v, u)
︸ ︷︷ ︸

= −∇f(u,v)

) −
√

w(u, v)∇f (u, v)

= −
∑

v∼u

√

w(u, v)∇f (u, v) = −
∑

v∼u

w(u, v) logf(u) f (v)

=: ∆f (u)

we derive a discrete graph Laplace operator as the local weighted mean of the neighbor

values projected into the tangential plane Tf(u)M.
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Illustration of the manifold-valued Laplace operator
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Illustration of the manifold-valued Laplace operator
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Manifold-valued graph p-Laplace operators

Let f ∈ H(V ; M). We define the following second-order differential operators:
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Manifold-valued graph p-Laplace operators

Let f ∈ H(V ; M). We define the following second-order differential operators:

The anisotropic graph p-Laplace operator

∆a
pf (u) := div

(
‖∇f‖p−2

f,p ∇f
)
(u)

= −
∑

v∼u

√

w(u, v)
p

d p−2
M (f (u), f(v)) logf(u) f (v)
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Manifold-valued graph p-Laplace operators

Let f ∈ H(V ; M). We define the following second-order differential operators:

The anisotropic graph p-Laplace operator

∆a
pf (u) := div

(
‖∇f‖p−2

f,p ∇f
)
(u)

= −
∑

v∼u

√

w(u, v)
p

d p−2
M (f (u), f(v)) logf(u) f (v)

The isotropic graph p-Laplace operator

∆i
pf (u) := div

(
‖∇f‖p−2

f,2 ∇f
)
(u)

= −
(∑

v∼u

w(u, v) d2
M(f (u), f(v))

)p−2

2
∑

v∼u

w(u, v) logf(u) f (v) .
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Manifold-valued graph p-Laplace operators

Let f ∈ H(V ; M). We define the following second-order differential operators:

The anisotropic graph p-Laplace operator

∆a
pf (u) := div

(
‖∇f‖p−2

f,p ∇f
)
(u)

= −
∑

v∼u

√

w(u, v)
p

d p−2
M (f (u), f(v)) logf(u) f (v)

The isotropic graph p-Laplace operator

∆i
pf (u) := div

(
‖∇f‖p−2

f,2 ∇f
)
(u)

= −
(∑

v∼u

w(u, v) d2
M(f (u), f(v))

)p−2

2
∑

v∼u

w(u, v) logf(u) f (v) .

Remember: These are elements in Tf(u)M.
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Variational denoising model

Given: Manifold-valued (noisy) data f0 : V → M
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Variational denoising model

Given: Manifold-valued (noisy) data f0 : V → M

Aim: Denoise f0 by solving the following optimization problem:

{

Ea(f ) =
λ

2
d2

H(V ;M)(f0, f) + ‖∇f‖p
`p

p(E;TfM)
, λ > 0

}

→ min
f∈H(V ;M)
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Variational denoising model

Given: Manifold-valued (noisy) data f0 : V → M

Aim: Denoise f0 by solving the following optimization problem:

{

Ea(f ) =
λ

2
d2

H(V ;M)(f0, f) + ‖∇f‖p
`p

p(E;TfM)
, λ > 0

}

→ min
f∈H(V ;M)

Note that for λ > 0 this formulation covers two well-known special cases:

p=1: (Anisotropic) total variation-regularized denoising [6, 7]

p=2: Tykhonov-regularized denoising

[6] J. Lellmann, E. Strekalovskiy, S. Koetter, D. Cremers: Total variation regularization for functions with values in a manifold. ICCV (2013)

[7] A. Weinmann, L. Demaret, M. Storath: Total variation regularization for manifold-valued data. SIAM Journal on Imaging Sciences 7 (2014)
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Variational denoising model

Given: Manifold-valued (noisy) data f0 : V → M

Aim: Denoise f0 by solving the following optimization problem:

{

Ea(f ) =
λ

2
d2

H(V ;M)(f0, f) + ‖∇f‖p
`p

p(E;TfM)
, λ > 0

}

→ min
f∈H(V ;M)

We need to find minimizers of the (anisotropic) energy functional:

Ea(f ) :=
λ

2

∑

u∈V

d2
M(f0(u), f(u)) +

1

p

∑

(u,v)∈E

‖∇wf (u, v)‖p
f(u),p
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Variational denoising model

Based on the notion of the subdifferential on M we derive:

0 ∈ ∂




λ

2

∑

u∈V

d2
M(f0(u), f(u)) +

1

p

∑

(u,v)∈E

‖∇f‖p
f(u)



 (f )

=
λ

2

∑

u∈V

∇Md2
M(f0(u), f(u)) +

1

p

∑

u∈V

∑

v∼u

(w(u, v))
p
2∂dp

M(f (u), f(v))

= −λ
∑

u∈V

logf(u) f0(u) −
∑

u∈V

∑

v∼u

(w(u, v))
p
2 dp−2

M (f (u), f(v)) logf(u) f (v)

=
∑

u∈V

(

−λ logf(u) f0(u) + ∆a
pf (u)

)
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Variational denoising model

Based on the notion of the subdifferential on M we derive:

0 ∈ ∂




λ

2

∑

u∈V

d2
M(f0(u), f(u)) +

1

p

∑

(u,v)∈E

‖∇f‖p
f(u)



 (f )

=
λ

2

∑

u∈V

∇Md2
M(f0(u), f(u)) +

1

p

∑

u∈V

∑

v∼u

(w(u, v))
p
2∂dp

M(f (u), f(v))

= −λ
∑

u∈V

logf(u) f0(u) −
∑

u∈V

∑

v∼u

(w(u, v))
p
2 dp−2

M (f (u), f(v)) logf(u) f (v)

=
∑

u∈V

(

−λ logf(u) f0(u) + ∆a
pf (u)

)

Deriving the above necessary optimality conditions one has to solve the following PDE

under suitable boundary conditions:

∆a
pf (u) − λ logf(u) f0(u) = 0 ∈ Tf(u)M for all u ∈ V
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Summary of the basic idea

Vector-valued case f : V → R
n Manifold-valued case f : V → M
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Summary of the basic idea

Vector-valued case f : V → R
n

Space of vertex functions:

H(V ;Rn) is a Euclidean space

Manifold-valued case f : V → M

H(V ; M) is a metric space
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Summary of the basic idea

Vector-valued case f : V → R
n

Space of vertex functions:

H(V ;Rn) is a Euclidean space

Gradient operator:

∇f(u, v) :=
√

w(u, v)
(
f(v) − f(u)

)

Manifold-valued case f : V → M

H(V ; M) is a metric space

∇f(u, v) :=
√

w(u, v) logf(u) f(v)

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 34/49



Summary of the basic idea

Vector-valued case f : V → R
n

Space of vertex functions:

H(V ;Rn) is a Euclidean space

Gradient operator:

∇f(u, v) :=
√

w(u, v)
(
f(v) − f(u)

)

Graph p-Laplacian operator:

∆a
pf(u) =

−
∑

v∼u

√

w(u, v)
p
‖f(v) − f(u)‖p−2(f(v) − f(u))

Manifold-valued case f : V → M

H(V ; M) is a metric space

∇f(u, v) :=
√

w(u, v) logf(u) f(v)

∆a
pf(u) =

−
∑

v∼u

√

w(u, v)
p
d p−2

M (f(u), f(v)) logf(u) f(v)
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Denoising synthetic manifold-valued data: Ω → S
1

Original phase data Noisy phase data

MSE = 0.0895
NL-MSSE approach [8]

MSE = 0.00250

[8] F. Laus, M. Nikolova, J. Persch, G. Steidl: A Nonlocal Denoising Algorithm for Manifold- Valued Images Using Second Order Statistics. SIAM

Journal on Imaging Sciences 10(1), pp..416-448 (2017)
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Denoising synthetic manifold-valued data: Ω → S
1

Original phase data Noisy phase data

MSE = 0.0895
Isotropic NL-TV approach

MSE = 0.00267
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Diffusion on synthetic manifold-valued data: Ω → S
2

Heat flow for p = 2 and λ = 0
Video
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Denoising on synthetic manifold-valued data: Ω → S
2

Tikhonov denoising for p = 2 and λ = 0.01
Video
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Diffusion on synthetic manifold-valued data: Ω → S
2

Anisotropic TV flow for p = 1 and λ = 0
Video
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Denoising on synthetic manifold-valued data: Ω → S
2

Anisotropic TV denoising for p = 1 and λ = 0.001
Video
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Denoising on synthetic manifold-valued data: Ω → SPD(3)

Anisotropic TV denoising result for p = 1 and λ = 0.01
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Denoising on synthetic manifold-valued data: Ω → SPD(3)

Anisotropic TV denoising result for p = 1 and λ = 0.01
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Denoising on synthetic manifold-valued data: S
2 → SPD(3)

p-Laplace flow for p = 1 and λ = 1
Video

[9] M. Gräf: Efficient algorithms for the computation of optimal quadrature points on Riemannian manifolds. Ph.D. thesis at TU Chemnitz (2013)
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Denoising of real DT-MRI data: Ω → SPD(3)

MRI system

I Diffusion tensor imaging (DTI) captures diffusion of water molecules

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 44/49

http://hdl.handle.net/1926/38
http://www.humanconnectomeproject.org/


Denoising of real DT-MRI data: Ω → SPD(3)

MRI system 2D Slice from Camino dataset [10]

I Diffusion tensor imaging (DTI) captures diffusion of water molecules

I Diffusion tensors can be interpreted as manifold-valued data on SPD(3)

[10] Cook et al.: Camino: Open-Source Diffusion-MRI Reconstruction and Processing. Proc. Intl. Soc. Mag. Reson. Med. 14 (2006) URL:

http://hdl.handle.net/1926/38
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Denoising of real DT-MRI data: Ω → SPD(3)

MRI system Reconstructed 3D fibres [11]

I Diffusion tensor imaging (DTI) captures diffusion of water molecules

I Diffusion tensors can be interpreted as manifold-valued data on SPD(3)

[10] Cook et al.: Camino: Open-Source Diffusion-MRI Reconstruction and Processing. Proc. Intl. Soc. Mag. Reson. Med. 14 (2006) URL:

http://hdl.handle.net/1926/38

[11] http://www.humanconnectomeproject.org/
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Denoising of real DT-MRI data: Ω → SPD(3)

Original 2D slice Anisotropic NL-TV for λ = 10 Isotropic NL-TV for λ = 10
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Denoising of real DT-MRI data: Ω → SPD(3)

Original 3D surface data

Video

Anisotropic TV for λ = 50

Video

Anisotropic TV for λ = 10

Video
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Denoising of real LiDAR imaging data: Ω → S
2

Surveillance drone with LiDAR sensor

I Light detection and ranging (LiDAR) measures distance to objects
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Denoising of real LiDAR imaging data: Ω → S
2

Surveillance drone with LiDAR sensor Acquired 3D point cloud of a landscape

I Light detection and ranging (LiDAR) measures distance to objects

I Surfaces are estimated from raw point cloud data
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Denoising of real LiDAR imaging data: Ω → S
2

Surveillance drone with LiDAR sensor Acquired 3D point cloud of a landscape

I Light detection and ranging (LiDAR) measures distance to objects

I Surfaces are estimated from raw point cloud data

I Surface normals can be interpreted as manifold-valued data on S
2

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 47/49



Denoising of real LiDAR imaging data: Ω → S
2

Original DEM data [19] Reconstruction
(p = 2, λ = 5)

Reconstruction
(p = 2, λ = 0.5)

[12] Gesch et al.: The national map elevation. Tech. rep. US Geological Survey (2009)
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Denoising of real LiDAR imaging data: Ω → S
2

Anisotropic TV recon.
(p = 1, λ = 2)

Isotropic TV recon.
(p = 1, λ = 2)

Sparse recon.
(p = 0.1, λ = 1)

[12] Gesch et al.: The national map elevation. Tech. rep. US Geological Survey (2009)
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Numerical realization

Observation:

We have different options to numerically approximate solutions to this PDE in the

tangential space Tf(u)M for each u ∈ Ω.

First method:

We consider the parabolic equation:

∂f

∂t
(u, t) = ∆a

pf (u, t) − λ logf(u,t) f0(u, t) for all (u, t) ∈ V × [0, ∞)

For a stationary solution, i.e.,
∂f
∂t (u, t) = 0, we solve the original problem.

Note that for λ = 0 this equation covers two well-known special cases:

p = 1: Total variation flow

p = 2: Heat equation
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Numerical realization

To solve the initial value problem

{
∂f(u,t)

∂t = ∆a
pf (u, t) − λ logf(u,t) f0(u)

f (u, 0) = f0(u)

with Neumann boundary conditions we use an explicit Euler scheme:

logfn(u) fn+1(u)

∆t
= ∆a

pfn(u) − λ logfn(u) f0(u).

Thus, we have:

fn+1(u) =

expfn(u)(∆t (−
∑

v∼u

√

w(u, v)
p
dM(fn(u), fn(v))p−2 logfn(u) fn(v) − λ logfn(u) f0(u)))

Attention: For p < 2 this yields very strict CFL conditions on ∆t.
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Numerical realization

Second method:

We use a small trick by inserting two zero terms:

0
!
= ∆a

w,pf (u) − λ logf(u) f0(u)

= −
∑

v∼u

√

w(u, v)
p

dM(f (u), f(v))p−2

︸ ︷︷ ︸

=:γ(u,v)

(logf(u) f (v)− logf(u) f (u))

− λ (logf(u) f0(u)− logf(u) f (u))

We linearize the above problem by assuming that γ(u, v) is known (by the last iteration)

and hence we get a linear equation system Af = b.

Applying Jacobi’s method we get the following relationship in Tfn(u)M:

(

λ +
∑

v∼u

γ(u, v)

)

logfn(u) fn+1(u) =
∑

v∼u

γ(u, v) logfn(u) fn(v) + λ logfn(u) f0(u)
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Numerical realization

We have the following relationship in Tfn(u)M:

(

λ +
∑

v∼u

γ(u, v)

)

logfn(u) fn+1(u) =
∑

v∼u

γ(u, v) logfn(u) fn(v) + λ logfn(u) f0(u)

Hence, we get the following update formula:

fn+1(u) = expfn(u)

(∑

v∼u γ(u, v) logfn(u) fn(v) + λ logfn(u) f0(u)

λ +
∑

v∼u γ(u, v)

)

Observation:

For very small parameter λ (almost no data fidelity) this scheme is less robust as the

explicit scheme.

Daniel Tenbrinck · FAU Erlangen-Nürnberg · Discrete Graph Operators for Manifold-Valued Data 4th November, 2020 4/12



Infinity Laplace operator

I let Ω ⊂ R
d be a bounded, open set and f : Ω → R smooth

I the infinity Laplacian ∆∞f in x ∈ Ω can be defined [13] as:

∆∞f (x) =
d∑

j=1

d∑

k=1

∂f

∂xj

∂f

∂xk

∂2f

∂xjxk
(x).

I applications in image interpolation and inpainting [14]

I interesting connections to game theory, i.e., Tug-of-War games [15]

[13] M.G. Crandall, L.C. Evans, R.F. Gariepy: Optimal Lipschitz Extensions and the Infinity Laplacian. Calc. Var. Partial Differ. Equ 13 (2001)

[14] V. Caselles, J.M. Morel, C. Sbert: An Axiomatic Approach to Image Interpolation. Trans. Img. Proc. 7 (1998)

[15] Y. Peres, O. Schramm, S. Sheffield, D. Wilson: Tug-of-War and the Infinity Laplacian, J. Amer. Math. Soc. 22 (2009)
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Min-max discretization

I simple approximation by min- and max-values in neighborhood [16]:

∆∞f (x) =
1

r2

(

min
y∈Bε(x)

f (y) + max
y∈Bε(x)

f (y) − 2f (x)

)

+ O(r2).

I first graph-based variant proposed in [17]:

∆∞f (u) = ||∇+f (u)||∞ − ||∇−f (u)||∞

= max
v∼u

|min(
√

w(u, v)(f (v) − f (u)), 0)|

− max
v∼u

|max(
√

w(u, v)(f (v) − f (u)), 0)|

I But: operator restricted to real-valued vertex functions

[16] A.M. Oberman: A Convergent Difference Scheme for the Infinity Laplacian: Construction of Absolutely Minimizing Lipschitz Extensions.

Math. Comp. 74 (2004)

[17] A. Elmoataz, X. Desquesnes, Z. Lakhdari, O. Lezoray: Nonlocal Infinity Laplacian Equation on Graphs with Applications in Image

Processing and Machine Learning. Math. Comp. Sim. 102 (2014)
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Connection to AML extensions

Observation: [18, 19]

Any (unique) viscosity solution f ∗ of the Dirichlet problem

{

−∆∞f (x) = 0, for x ∈ Ω,

f (x) = ϕ(x), for x ∈ ∂Ω,

is an absolutely minimizing Lipschitz extension (AML) of ϕ, i.e.,

f ∗(x) = g(x) for x ∈ ∂Σ ⇒ ||Df ∗||L∞(Σ) ≤ ||Dg||L∞(Σ),

for every open, bounded subset Σ ⊂ Ω and every g ∈ C(Σ).

[18] G. Aronsson: Extension of Functions Satisfying Lipschitz Conditions. Arkiv für Mate 6 (1967)

[19] R. Jensen: Uniqueness of Lipschitz Extensions Minimizing the sup-Norm of the Gradient. Arch. Rat. Mech. Anal. 123 (1993)
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Constructing discrete Lipschitz extensions

I Idea: minimize locally the discrete Lipschitz constant [20]

min
f0

L(f0) with L(f0) = max
xj∼x0

|f0 − f (xj)|

|x0 − xj|

I this leads to a consistent scheme for solutions of −∆∞f = 0

I the infinity Laplace operator can be approximated by

∆∞f (x0) =
1

|x0 − x∗
j | + |x0 − x∗

i |

(

f (x0) − f (x∗
j)

|x0 − x∗
j |

+
f (x0) − f (x∗

i )

|x0 − x∗
i |

)

for which the neighbors (x∗
i , x∗

j) are determined by:

(xi, xj) = argmaxxi,xj∼x0

|ui − uj|

|x0 − xi| + |x0 − xj|

[20] A.M. Oberman: A Convergent Difference Scheme for the Infinity Laplacian: Construction of Absolutely Minimizing Lipschitz Extensions.

Math. Comp. 74 (2004)
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Graph infinity Laplacian for manifold-valued data

I we define the graph infinity Laplace operator for manifold valued data ∆∞f in a

vertex u ∈ V as

∆∞f (u) :=

√

w(u, v∗
1) logf(u) f (v∗

1) +
√

w(u, v∗
2) logf(u) f (v∗

2)
√

w(u, v∗
1) +

√

w(u, v∗
2)

I v∗
1, v∗

2 ∈ N (u) maximize the discrete Lipschitz constant in the local tangential plane

Tf(u)M among all neighbors, i.e.,

(v∗
1,v∗

2) =

argmax
(v1,v2)∈N 2(u)

∥
∥
∥

√

w(u, v1) logf(u) f (v1) −
√

w(u, v2) logf(u) f (v2)
∥
∥
∥

f(u)
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Interpolation problems

Goal: Inpaint A ⊂ V using information in ∂A = V/A
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Interpolation problems

Goal: Inpaint A ⊂ V using information in ∂A = V/A

1. Build a graph using image patches and local neighbors:

→ nonlocal relationships for vertices in border zone (red)

→ local connection for inner nodes in A
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Interpolation problems

Goal: Inpaint A ⊂ V using information in ∂A = V/A

1. Build a graph using image patches and local neighbors:

→ nonlocal relationships for vertices in border zone (red)

→ local connection for inner nodes in A

2. Solve ∆∞f (u) = 0 for all vertices u ∈ A ⊂ V
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Interpolation problems

Goal: Inpaint A ⊂ V using information in ∂A = V/A

1. Build a graph using image patches and local neighbors:

→ nonlocal relationships for vertices in border zone (red)

→ local connection for inner nodes in A

2. Solve ∆∞f (u) = 0 for all vertices u ∈ A ⊂ V

3. Add border nodes to ∂A and repeat with 1 until A = ∅.
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Inpainting of manifold-valued data Ω → M

Manifold-valued data to be inpainted Original data with values on M = S
2
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